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Abstract 

Proteins are the building blocks of all cells in both human and all our living 

creatures of the world. Most of the work in the living organism is performed by Proteins. 

Proteins are polymers of amino acid monomers which are biomolecules or 

macromolecules. The tertiary structure of protein represents the three-dimensional shape 

of a protein. The functions, classification and binding sites are governed by protein’s 

tertiary structure. If two protein structures are alike then the two proteins can be of the same 

kind. To detect the similarity of proteins accurately in real time is crucial in the research.  

In this thesis, we present an analysis on local binary pattern histogram, Wavelet 

transformed Local Binary Pattern Histogram, Separate Row Multiplication Matrix with 

Uniform Local Binary Pattern Histogram, Neighbor Block Subtraction Matrix with 

Uniform Local Binary Pattern Histogram and Atom Bond for protein structural class 

prediction. We have used them on the distance matrix of α carbons of proteins which are 

used as an image for feature extraction.  

The experiments were done on a 40 percent reduced dataset of PDB files. We have 

demonstrated the usefulness of this feature over a large variety of supervised machine 

learning algorithms. We propose the use of Random Forest as the best performing classifier 

on this dataset using the selected features. 

Secondly, Protein-Ligand binding is accountable for managing the tasks of 

biological receptors that helps to cure diseases and many more. So, binding prediction 

between protein and ligand is important for understanding a protein’s activity or to 

accelerate docking computations in virtual screening-based drug design. 

Protein-Ligand Binding Prediction requires three-dimensional tertiary structure of 

the target protein to be searched for ligand binding. In this paper, we’ve introduced a 

supervised learning algorithm for predicting Protein-Ligand Binding which is a Similarity-

Based Clustering approach. 

Our algorithm works better than most popular and widely used machine learning 

algorithms. 

 

So, our work is divided into two parts, Protein Structural Class Prediction & 

Protein-Ligand Binding Prediction. 
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Chapter1  

 

Introduction 

In this thesis we’ve done two related works, finding the novel features for Protein Class 

Prediction & proposing a new algorithm for Protein-Ligand Binding Prediction. Each of 

them is presented separately in different sections in each Chapter. Rest of the paper is 

organized as following: Chapter 2 briefly presents a literature review of the related work; 

Chapter 3 describes the methodology and materials proposed in this paper; experimental 

results are shown in Chapter 4 with a discussion and the paper conclude in Chapter 5. 

 

 

 

1.1 Protein Structural Class Prediction 

Protein tertiary structure comparison is very important in many applications of modern 

structural biology, drug design, drug discovery, in studies of protein-protein interactions 

and other fields. This is especially significant because the structure of a protein is more 

protected than the protein sequence [1]. Many works have been done to find protein binding 

[2]. 

Comparison of protein structure has been done in many works of literature by 

alignment of distance matrices [3], using iterated double dynamic programming [4], using 

elastic shape analysis [5] and many other techniques. The most common way of comparing 

protein tertiary structure is to treat the protein as a three-dimensional object and 

superimpose one on another. Different distances are used to calculate the differences 

between the proteins. 

The distance matrix of α carbon can be seen extensively used in [6] [7] as a feature 

which represents the tertiary structure of a protein chain. This feature is used as a feature 

vector which represents the structure of a protein to measure either similarity or 

dissimilarity to measure and compare the feature vectors with one another in pattern 

recognition literature. A mapped two-dimensional feature matrix is created from the 3D 
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coordinate data of protein. The intra-molecular distance is used to make the α carbon 

distance matrix which mirrors the tertiary structure of a protein and the conserved elements 

of the secondary structure in it. With an input matrix size of N x N, the distance matrix 

based exact algorithms run in 0(N!) time [8]. 

An image is basically a matrix of N x N dimension with corresponding data in each 

cell. Thus, the distance matrix can be used as an image. Basically, three types of features 

can be generated from an image: pixel based, filter based and computationally generated 

features. Pixel based features e.g. histograms are simplistic and dependent on the capability 

of classification algorithms. Filter based methodologies transform the original image to use 

feature extraction methods. Refined algorithms are used to segment and other various 

algorithms are used to detect different features. 

Using ideas from computer vision and utilizing it in protein structure retrieval is not 

uncommon in the field. ProteinDBS server [9] implement a similar approach in [10] by 

Chietal. Texture features from the original size images and diagonally partitioned images 

were extracted by Chi et al. CoMOGrad and PHOG [8] also used images to extract their 

two novel features whereas we are extracting histograms of local binary pattern images 

from the original image. 

In this paper, we propose the combination of local binary pattern histogram, Wavelet 

transformed Local Binary Pattern Histogram, Separate Row Multiplication Matrix with 

Uniform Local Binary Pattern Histogram, Neighbor Block Subtraction Matrix with 

Uniform Local Binary Pattern Histogram and Atom Bond features to be used for protein 

similarity measurement. We extract the distance matrix of α carbon of a protein from PDB 

file and use the distance matrix as an image to extract our first four features and Atom Bond 

is extracted from the PDB files. We have used a large variety of classification algorithms 

to test the extracted features. We are also going to show the results and comparative study 

of different implementation methodologies such as wavelet and pyramid histogram-based 

features [11] and CoMOGrad and PHOG. The method we have proposed is able to produce 

a better result on some classification algorithm over the previous methods on the same 

benchmark. 
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1.2 Protein-Ligand Binding Prediction 

Human body uses protein for repairing tissues, making enzymes, hormones, and other 

biological chemicals. It is an essential building block of bones, muscles, cartilage, skin, 

and blood. On the other hand, a ligand is a material that has the potentiality to bind to and 

forms a composite with a biomolecule in order to carry out a biological function. In Protein-

Ligand Binding, the ligand is usually a molecule which produces a signal by binding to a 

locus on a target protein. The binding typically results in a change of conformational 

isomerism (conformation) of the target protein. The evolution of the protein’s 

responsibility depends on the development of specific sites which are designed to bind 

ligand molecules. Ligand binding ability is important for the management of biological 

functions. Ligand binding interactions changes the protein state and function. Protein-

Ligand Binding prediction is very important in many applications of modern structural 

biology, drug design, drug discovery and other fields. 

We can compare Protein-Ligand interactions with lock and key approach. Let’s assume 

protein as a lock and ligand as a key. So, for interactions their binding space need to be 

perfectly matched. Based on the tertiary structure of both protein and ligand, binding 

between them can be predicted using x, y, z coordinates of the atoms of the proteins and 

ligands. We’ve introduced Similarity-Based Clustering method for the Binding prediction 

as we have supervised data. So, the higher the number of supervised training data is, the 

higher the chance of accurate prediction is. 

Our algorithm is a combination of KNN [25] and clustering methodology. Where 

traditional machine learning algorithms performs poor than random classification, our 

algorithms works better than those. 
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Chapter 2 

 

Background and Literature Review 

2.1 Biological background 

2.1.1 Protein 

Protein is a large biomolecule or macromolecule consisting of one or more long 

chains of amino acid. 50% of the Cellular Dry Weight is protein. Humans have about 

25,000 genes. About 20,000 of these genes are protein-coding genes. That means humans 

make at least 20,000 proteins. Not all of them are different since the number of protein-

coding genes includes many duplicated genes and gene families. There are 300 amino acids 

and only 20 of them occur in protein. 

Multiple amino acid makes Peptide Bond (Figure 1) between Amine (NH2) and 

Carboxyl (-COOH) group to produce a chain that represents a protein and releases water 

(H2O). 

2.1.2 Ligand 

A ligand is a particle (functional group) according to coordination chemistry, that 

binds to a central metal atom for the formation of a coordination complex. The bonding 

with the metal mainly involves traditional donation of one or more of the ligand's electron 

pairs. The nature of metal–ligand bonding can vary from covalent to ionic. Moreover, the 

metal–ligand bond order can vary from one to three. Ligands are viewed as Lewis bases, 

although rare cases are known to involve Lewis acidic "ligands". 

Figure 1. Peptide Bond 

https://en.wikipedia.org/wiki/Amino_acid#/media/File:Peptidformationball.svg
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2.1.3 Protein Structure 

 3 types of protein structures are there. 

 

i. Primary Structure: It is a sequence of amino acids present in polypeptide chain. 

Each amino acid in this chain is “residue”. Amino Acids have covalent bonds 

only. 

ii. Secondary Structure: In this structure, residues has non-covalent bonds where 

maximum of the bonds are Hydrogen-Bonds. Two types of Secondary 

structures are 

a. α-helix: It is a right-handed spiral structure and tightly packed. The peptide 

bonds work as the backbone core. Side chains extends outwards. This 

structure is stabilized by Hydrogen bonding between carbonyl oxygen and 

amide hydrogen. Number of amino acids per turn is 3.6 angstrom and 

vertical distance between consecutive tuns of the helix is 5.4 angstrom. 

b. β-sheet: This is the structure when two or more polypeptides line up side by 

side. Individual polypeptide is called β-strand. Each of them is fully 

extended. This structure is stabilized by Hydrogen bond between NH+ and 

COO- groups of adjacent chains. Side by side polypeptides an be parallel or 

anti-parallel. 

iii. Tertiary Structure: It is a3-D structure based on various types of interactions 

between the side chains of the peptide chain. The α-helixes and β-pleated-sheets 

are folded into a compact globular structure. The structure is stable only when 

the parts of a protein domain are locked into place by specific tertiary 

interactions, such as salt bridges, hydrogen bonds, and the tight packing of side 

chains and disulfide bonds. The atomic coordinates of most of these structures 

are deposited in a database known as the protein data bank (PDB). It allows the 

tertiary structures of a variety of proteins to be analyzed and compared. 

2.2 Protein Structural Class Prediction 

There are experiments performed to compare protein structure as three-dimensional 

objects. Score function based on different distance metrics to find similarity and 

dissimilarity as a measurement has been proposed by these methods. The most prominent 

improvement of the literature is presented briefly below. 

A. DALI 

Distance Alignment Matrix Method (DALI) [6] calculates an alignment score by 

finding an absolute alignment between the α carbon distance matrices of proteins. A 

distance matrix is created by breaking the input structure into hexapeptide fragments 

and evaluating the contact patterns(pair-wise) between them and making a list with a 

matching score by saving the matching pairs [3]. The final matching score and overall 

alignment are made by gathering pairs in the correct order. Monte Carlo optimization 

is used for the assembling. 
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B. CE 

Combinatorial Extension (CE) [12] is comparable to DALI because it creates a 

series of fragments by breaking each structure in the query set and later attempts to 

reassemble toward a complete alignment. Protein structures are compared by using 

combinatorial extension and Monte Carlo optimization. The computational cost is quite 

huge to implement this method despite having good accuracy. Thus, a real-time web 

service cannot be implemented due to its cost ineffectiveness. 

C. SSAP 

The Sequential Structure Alignment Program (SSAP) [13] uses β carbons unlike 

the other methods using α carbon of protein in structural alignment except for glycine. 

Double Dynamic programming is used to produce atom-to-atom vectors which is based 

on structural alignment in structure space. Inter-residue distance vectors amid every 

individual residue and its nearest non-contiguous neighbors on each protein are first 

generated. The vector differences amid neighbors are created in a series of matrices. 

Optimal local alignments are found from each resulting matrix by applying dynamic 

programming. A ’summary’ matrix is created from the summed up optimal local 

alignment. A comprehensive structural alignment is resolved by applying dynamic 

programming again. 

D. FATCAT 

Flexible structure AlignmenT by Chaining Aligned fragment pairs with Twists 

(FATCAT)[14] treats the protein structure like a fixed body. It produces good results 

for maximum cases with other fixed body approaches [15]. 

E. ProteinDBS 

ProteinDBS [9] compares α carbon distance matrix images by using some common 

features of CBIR (Content Based Image Retrieval). It correlates only some particular 

image features thus it performs much faster than the previous ones. The drawback of 

ProteinDBS is the expensive cost of computation. 

F. TM-align and SP-align 

The most well-known method for protein structure alignment is TM-align [16] [17]. 

Finding an optimal alignment and an alignment matrix it computes the TM-Score. SP-

Align [18] is also a popular approach which is similar to TM-align. The difference 

between the two lies in the alignment algorithm and the alignment score. 
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G. CoMOGrad and PHOG 

CoMOGrad stands for Co-occurrence Matrix of the Oriented Gradient of Distance 

Matrices and PHOG stands for Pyramid Histogram of Oriented Gradient [8]. This 

methodology also uses the α carbon distance matrix of protein. The dimension of all 

distance matrix is converted to 128 × 128. In CoMOGrad, the gradient angle and 

magnitude is computed from the distance matrix and the values are quantized. 

Quantization is a compressing technique which compresses a range of values to a single 

quantum value. In this methodology, the values are quantized to 16 bins which produce 

a co-occurrence matrix which is 16 × 16 matrix. The matrix is converted into a vector 

of size 256. Quadtree from the distance matrix is created with the desired level in 

PHOG. Gradient Oriented Histogram of each node is calculated with the preferred 

number of bins and bin size. In gradient oriented histogram an image is divided into 

small sub-images called cells and histogram of edge orientations are accumulated 

within the cell. The combined histogram entries are used as the feature vector 

describing the object. Total features which are the multiplication of total nodes and 

number of bins are incorporated in the vector with the size of the total number of 

features. The vector is normalized by dividing it with the sum of its components. 

 

 

2.3 Protein-Ligand Binding Prediction 

2.2.1 Background 

In order to understand the related works and before diving into our methodology, we first 

need to have some background knowledge that would be helpful for understanding the 

methodologies more efficiently. These points are discussed below. 

A. Tertiary Protein Structure 

Protein tertiary structure is defined by its atomic coordinates which refers to the 

three-dimensional shape of protein. Protein is a chain of amino acid where each of them 

has alpha carbon. Coordinates of these alpha carbon defines the tertiary structure 

precisely. In a protein PDB, 3D coordinates of the atoms are given sequentially which 

is gained from tertiary structure. 

 

 



 8 

B. Ligand Binding 

Ligand is a substance that forms a complex with a biomolecule to perform a 

biological task. Usually it is a small sized biological element having few atoms. In 

protein-ligand binding, the ligand is usually a molecule which produces a signal by 

binding to a site on a target protein. The structure of a protein, for example an enzyme, 

may change upon binding of its natural ligands. So, learning ligand binding is essential 

for predicting the functions of the biological components. 

C. Clustering 

Clustering is the task of grouping objects based on their similarity. It is commonly 

used in machine learning, data mining, pattern recognition, image analysis, 

bioinformatics, computer graphics etc. Here, similarity refers to distance between 

objects. Small distance represents higher similarity. Every cluster has a cluster center. 

Cluster center can be the average of the objects within the cluster, average of minimum 

and maximum distance between the objects. 

 

2.2.2 Related Work 

Many experimental techniques can be used to investigate various aspects of 

protein–ligand binding. X-ray crystallography, nuclear magnetic resonance(NMR), Laue 

X-ray diffraction, small-angle X-ray scattering, and cryo-electron microscopy provide 

atomic-resolution or near-atomic-resolution structures of the unbound proteins and the 

protein–ligand complexes, which can be used to study the changes in structure and/or 

dynamics between the free and bound forms as well as relevant binding events. 

Although experimental techniques can investigate thermodynamic profiles for a ligand–

protein complex, the experimental procedures for determination of binding affinity are 

laborious, time-consuming, and expensive. Modern rational drug design usually involves 

the HTS of a large compound library comprising hundreds or thousands of compounds to 

find the lead molecules, but this is still not realistic using experimental methods alone. 

Some of both experimental and theoretical methods are presented briefly below. 

A. Isothermal Titration Calorimetry (ITC) 

The structural and dynamic data alone, even when coupled with the most 

sophisticated computational methods, cannot provide information about the complete 

thermodynamic profiles consisting of the binding free energy, entropy, and enthalpy, 

and, therefore, may not accurately predict the binding affinity [29]. 
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B. Surface Plasmon Resonance (SPR) 

SPR [30], which is an optical-based method to measure the change in the refractive 

index near a sensor surface, is label-free and capable of measuring real-time 

quantification of protein–ligand binding kinetics and affinities. 

 

C. Fluorescence Polarization (FP) 

Fluorescence has a wide spectrum of wavelengths, and, therefore, multiple colors 

can be applied for detecting the binding of the fluorescent-labelled ligand to a target. 

Fluorescence-based techniques [31] used for investigating intermolecular interactions. 

 

D. Protein–Ligand Docking 

Protein–ligand docking [32], which is a branch of the molecular docking field, 

represents a particularly important methodology due to its importance in the current 

drug discovery process. Protein–ligand docking methods contain two essential 

components: the search algorithm and the scoring function. The former is responsible 

for searching through different ligand conformations and orientations (poses) within a 

given target protein; the latter is responsible for estimating the binding affinities of the 

generated poses, ranking them, and identifying the most favorable binding mode(s) of 

the ligand to the given target. 

 

E. Free Energy Calculations 

Free energy calculations [33] of the protein-ligand binding try to compute the 

binding free energies based on the principles of statistical thermodynamics. Such 

calculations are commonly based on extensive computational simulations (i.e., MD or 

MC) of the protein and ligand and, as such, require computational efforts several orders 

of magnitude higher than the traditional scoring functions. 
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Chapter 3 

Methodology 

3.1 Protein Structural Class Prediction 

In this section, we are going to describe our methodology. Atom bond features are 

generated from the PDB files. Images are created from the α carbon of protein collected 

from the PDB files of the given dataset. Separate Row Multiplication Matrix with Uniform 

Local Binary Pattern Histogram, Neighbor Block Subtraction Matrix with Uniform Local 

Binary Pattern Histogram, LBP histogram and Wavelet Transformed LBP histogram 

features are extracted from each image referring to total seven classes of protein. Synthetic 

Minority Over-sampling Technique (SMOTE) is used to remove class imbalance problem. 

K-fold cross-validation with three-fold was used to test the capability and efficiency of the 

dataset. The block diagram of the methodology used in this paper is given in Figure 2. 

 
 

 
 alpha  

 

 
 128x128 

 
 

 

 

 

 

 

 
 

 

 

Figure 2. Block diagram of Protein Structural Class 

Prediction methodology 
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3.1.1 Dataset 

We have used 40 percent ID filtered subset of PDB-style files for SCOPe domains 

version 2.03 [19] as our dataset. It contains a total of 12119 PDB files. Each PDB files 

contains SCOP(e) concise classification string (sccs) which respectively describes class, 

fold, superfamily, and family. In this literature, we are going to experiment only with the 

class of protein. In the dataset, there are total seven protein classes. The names of the 

protein classes can be found in Table 1. 

Table 1. Protein Classes and its Corresponding Instances 

Class Name Total Instances 

Small Proteins 640 

All α Proteins 2195 

α and β proteins(a/b) 3305 

α and β proteins(a+b) 3006 

Membrane and cell surface proteins and peptides 204 

All β proteins 1485 

Multi-domain proteins(α and β) 219 

3.1.2 Image Generation 

We have generated Images of Protein Structure according to the methodology described 

in CoMOGrad and PHOG [8]. The number of α carbons of protein can be found in the PDB 

file of the protein. The total number of α carbon atoms are calculated from the PDB file 

and the x, y and z coordinates of the α carbon stored. They are used to generate a distance 

matrix. The matrix is used as the image of the protein structure of that particular protein. 

The generated images are black and white in nature. 

3.1.3 Scaling Images to Same Dimension 

The dimension of protein images is based on the total number of α carbon they have. 

So, every individual protein image is different from the other. Therefore, the images should 

be scaled to the same dimension. CoMOGrad and PHOG have used Bi-cubic interpolation 

and wavelet transform to scale all the protein images into 128 x 128 dimension [8]. During 

the Bi-cubic interpolation step, most of the images were in 128x128 dimension so in the 

wavelet transform step they scaled all the images to that dimension. Thus, we have directly 

scaled the images to 128x128 dimension. We have used both real and scaled images to 

examine the results. 
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3.1.4 Feature Extraction 

Our first four feature groups are types of histograms and the fifth feature group is about 

the prognosis of the atoms. The histograms were made from both scaled and unscaled 

images. 

 

 

 

1) Local Binary Pattern Histogram: The work of Ojala et al. [20] popularized LBP. 

Although it was first narrated in 1994 [21]. Local Binary Pattern computes the local 

representation of the texture of an image as a texture descriptor. Comparing each pixel 

with its neighboring pixels the local representation is created. The image is transformed 

into a grayscale image. In a 3x3 neighborhood, the center pixel value is calculated by 

comparing with its eight neighboring pixels. Each comparison gives a result of either 0 

if the center pixel value is greater than the comparing neighbor pixel or 1 for the latter. 

A clockwise direction starting from the top-left one provides a binary number. The 

binary number is converted to a decimal number and the value is placed in the center 

pixel. LBP codes or Local Binary Patterns are the obtained binary numbers. An 

example of a basic Local Binary Pattern is given in Figure 3. After calculating the value 

for each pixel of the image, a histogram is calculated. A 3 x 3 neighborhood has 28 = 

256 possible patterns, thus the values range from 0 to maximum 255 in each pixel of 

the image. The total number of bins of the histogram is thus 256. We would get 256 

attributes from each image. 

 

2) Wavelet transformed Local Binary Pattern Histogram (WtLBP-Hist): We have used 

Haar wavelet transform [22] for our wavelet transformation. It is based on lifting 

scheme. Wim Sweldens developed by Lifting scheme [23]. The image is converted into 

three two dimensional matrices for storing blue, green and red value of each pixel. The 

rows and columns of the three matrices and protein image are equal. Haar wavelet 

transformation is applied on the three matrices and the corresponding pixel value of the 

1 1 0 

1  0 

0 1 1 

6 5 2 

9 4 2 

1 7 8 

Figure 3. An example of basic LBP 

Threshold 
Binary: 11001101 

(Clockwise) 

Decimal: 205 
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three images are added to generate the wavelet image. LBP techniques are then used 

on wavelet image to get 256 attributes. 

 

 

3) Separate Row Multiplication Matrix with Uniform Local Binary Pattern Histogram 

(SRM Matrix-ULBPHist): The image is split into 3x3 matrices. From each matrix, we 

get 3 rows with the dimension of 1x3. By multiplying each row with the same 3x3 

matrix, we get three result matrices consisting of 1x3 dimension. Each cell is divided 

by 100. The results are then put in the 3x3 matrix in accordance with the row numbers. 

The color intensity of an image is between 0 to 255. So, if the value 

ofanycelloftheresultmatrixisgreaterthan255, then the value is replaced with 255. After 

applying this technique, the uniform local binary pattern is applied. From Figure 4, (a) 

presents a 3x3 section of matrix and the rows, (b) exhibits the result of multiplication, 

(c) shows the value after dividing by 100, (d) shows the replacement result of value 

greater than 255 and (e) shows a 3x3 matrix section after SRM-Matrix transformation. 

Another variation of the LBP is called uniform pattern [20]. Some binary patterns occur 

more generally in texture images. If the binary pattern comprises of at mosttwo0-1or1-

0transitionswhenthebitpatternisheld circular then the pattern is called uniform. For 

instance, 01000000 has 2 transitions, 00000111 has 2 transitions which are uniform 

pattern on the other hand 01010100 has 6 transitions,11001001 has 4 transitions which 

are not uniform. A neighborhood with the dimension of 3x3 has 28 = 256 possible 

patterns with 58 of them being uniform. For estimating the histogram, every uniform 

pattern gets a separate bin while a single bin is allotted for all non-uniform patterns. 

Therefore, from a uniform binary pattern, we get the histogram of total bin size of 59. 

 

4) Neighbor Block Subtraction Matrix with Uniform Local Binary Pattern Histogram 

(NBSMatrix-ULBPHist): Blocks are of the same dimension, 3x3. Two blocks of 

matrices are considered neighbors for this method if the center cells are neighboring. 

Because of this, the value of the last two columns of the first block and first two 

columns of the second block are same. The two blocks of matrices are subtracted and 

the result is set in the place of the first block. If any of the cells have any negative 

number, then 0 is placed instead of the negative value. The replacing of value is made 

because the histogram bin begins from zero. Uniform local binary pattern is then used 

to compute the histogram. 
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5) Atom Bond Features: First of all, we’ve identified unique atoms amidst all the protein 

PDB files. From each protein PDB file, we’ve counted occurrences of each atom. Then 

we’ve taken the percentage as features of each atom among all the atoms that each 

protein has. Then we’ve taken first 100 sequential atoms and used their atomic mass as 

the feature. Then we’ve counted the bond that each pair of atoms has in a particular 

protein using atomic distance based on a threshold value. Finally, we’ve taken the 

percentage as the feature of the bond of each unique pair of atoms among all the bonds 

that the protein has. Summary of all the feature groups used in this paper is given in 

Table 2. 

 

20 8 42 

Row 1 

12 19 90 

Row 2 

34 56 31 

Row 3 

20 8 42 

12 19 90 

34 56 31 

   

1924 2664 2862  192 266 286  192 255 255 

           

3528 3528 5004  352 549 500  255 255 255 

           

2406 3072 7429  240 307 742  240 255 255 

(b)  (c)  (d) 

192 255 255 

255 255 255 

240 255 255 

 (e)  

Figure 4. An example of Separate Row Multiplication Matrix with 

Uniform Local Binary Pattern Histogram 

3x3 Matrix 

(a) 
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Table 2. Feature Group For Protein Class Prediction 

Identifier Feature Group Name Number of Features 

A LBP-Hist 256 

B WtLBP-Hist 256 

C SRM Matrix-ULBP-Hist 59 

D NBS Matrix-ULBP-Hist 59 

E Atom Bond 116 

 

3.1.5 Re-evaluate Dataset 

To perform benchmark analysis, we received the dataset generated from the 

CoMOGrad and PHOG literature [8]. As the SCOPe-sid is unique for every variant of the 

protein, we have created the dataset based on the proteins which are both on the 40 percent 

Id filtered subset and CoMOGrad and PHOG paper. After analyzing we have found that 

there are total 11052 instances in both of our feature groups and CoMOGrad and PHOG 

features. The seven classes and the total number of instances of each class are given in 

Table 1. 

 

3.1.6 Removing Multiclass Imbalance Problem 

From Table 1, it can be noted that the classes are imbalanced. To balance the classes, 

we have used Synthetic Minority Over-sampling Technique (SMOTE) [24]. 

In Weka, the percentage of SMOTE indicates that how many more instances would be 

generated. As the highest number of instances, a class has is 3305, we have oversampled 

our instances close to that number. If x is denoted by the highest number of instances among 

all the classes and y denoted by a class which we will SMOTE then the equation for the 

percentage calculation is shown in (1). 

 

 𝑥 − 𝑦  

 𝑦
 ∗ 100 

 

(1) 

 

We have used 5 nearest neighbors to generate the oversample dinstances. After 

applying SMOTE to all datasets, the total number of instances of each dataset close to 

23132. 
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3.1.7 Classifiers 

We have used five classifiers: K-Nearest Neighbor (KNN), Naive Bayesian Classifier, 

Support Vector Machines (SVM), Adaptive Boosting (AdaBoost) and Random Forest. A 

concise description of the classifiers is given in this section. 

1) K-Nearest Neighbor (KNN): K-nearest neighbor algorithm (KNN) [25] is a similarity-

based classification technique. It is a lazy classification technique. Distance metrics are 

used for each instance of the whole dataset for calculating the K nearest neighbors. The 

labels of the nearest neighbors decide the label of the test instances. It works poorly for 

high dimensional data. Euclidean distance, Hamming distance, Manhattan distance, 

Minkowski distance, Tanimoto distance and Jaccard distance are used for similarity 

measures. 

2) Naive Bayesian Classifier: Naive Bayesian classifier [25] is based on probabilistic 

inference of samples observed where the decision variable and the features form a very 

naive structure of Bayesian Network. Naive Bayesian classifiers work best for image 

recognition and text mining. 

3) Support Vector Machine (SVM): Support Vector Machine [25] works by creating and 

separating hyperplane for a given dataset by sampling different classes which are 

separated by maximum width. 

4) Adaptive Boosting (AdaBoost): Adaptive Boosting classifier [25] is a meta-classifier 

which aims to make a strong classifier using a set of weak classifiers. The classifiers 

whose performance are marginally better than random classifiers are called weak 

classifiers. 

5) Random Forest: Random Forest [25] is an ensemble classifier. A decision tree is created 

in each iteration with features taken randomly. It samples selected features using 

bootstrap aggregating. 

3.1.8 Performance Evaluation 

Separate independent test set or cross fold sampling method is used by researchers for 

performance evaluation. They are used to check the stability of the model. As k-fold 

cross-validation overcomes the problem of over-fitting it is preferred by researchers for 

performance approximation. We have used k-fold cross-validation technique. K-fold 

cross validation splits the data into k partitions and then use each partition as a test set 

with each iteration where the training data is the rest of the data. We have used accuracy 
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as the performance metric in this paper. The percentage of correctly classified instances 

to the total number of instances is termed as accuracy. 

3.2  Protein-Ligand Binding Prediction 

Protein Ligand Binding prediction is a binary class classification problem. We’ve used 

Image Based Features for each Protein and Ligand dataset. Our methodology is a weak 

learner as it doesn’t make any model. It is Based on threshold values.  

 

3.2.1 Dataset 

We’ve used Computer Vision and Pattern Discovery for Bioimages Group @ BII as our 

dataset. In our dataset, there are 3000 protein-ligand complexes that were determined 

experimentally with 3D structures available. Each protein (xxxx_pro_cg_.pdb) and its 

ligand (xxxx_lig_cg_.pdb) are of one-to-one correspondence, i.e. they can bind to each 

other and make Protein-Ligand complex. The dataset has 3000 pairs of protein and ligand 

where same name/ID of protein and ligand interacts/binds with each other. 

 

3.2.2 Data pre-processing 

We’ve used OpenCV [7] library to create images from PDB files. For protein, we’ve 

considered the coordinates of only the alpha-carbons to generate the distance matrix to 

create image. Because alpha-carbon can represent the structural information of protein 

quite well. But the given ligands were small in terms of atom number. So, while creating 

ligand images, we’ve considered all the atom’s co-ordinates for generating distance matrix. 

Among the PDB files, 33 ligands have only one atom, which will create 1x1 image 

having no significance for feature extraction. So, we had to compromise those 33 ligands 

as well as 33 corresponding proteins from training. 

The given dataset has only positive instances (the pairs of protein and ligand where they 

bind with each other). But there were no negative instances (the pairs of protein and ligand 

where they do not bind with each other). The missing negative instances have created our 

dataset highly imbalanced. To overcome this imbalance, we’ve generated negative instances 

in two different ways. 
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1) Random Negative Undersampling: We have 2967 protein PDB and 2967 ligand PDB 

where 8803089 pairs are possible. Among these, 2967 pairs are given as positive 

instances and the rest 8800122 pairs are unknown/unseen instances. From the unseen 

pairs, we’ve taken 2967 pairs randomly as negative instances to make our dataset 

balanced. 

 

2) Clustering-Based Undersampling: Using the positive instances (2967 pairs), we’ve 

created 10 clusters. Then we’ve searched for 2967 unseen pairs randomly as negative 

instances where they belong to those 10 clusters. We’ve made sure that each cluster 

has exactly same number of positive and negative instances to make the dataset 

balanced. Shown in Figure 5.  

 

 

 

 

(Protein i) + (Ligand i) 

              Yes 
(Protein i) + (Ligand j) 

      Unseen => No 

Cluster 1 

Cluster 2 

Cluster 3 

Figure 5. Clustering-Based Undersampling 
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3.2.3 Our Classifier 

We’ve developed a similarity-based clustering method to predict the binding class. 

Distance is used to measure similarity. Our methodology is given in Figure 6. 

PDB

128 x 128

Image

Threshold

+

# of nearest Neighbor

Weighted Majority 
Voting

Output

Yes/No

Extract Features

from both Protein and 
Ligand

Calculate distance 
1

Given P ~ Related L

Euclidean

Distance

Distance

Mean

Cluster

Mean

Manhattan

Distance

Distance

Mean

Cluster

Mean

Calculate distance 
2

Given L ~ Related P

Euclidean

Distance

Distance

Mean

Cluster

Mean

Manhattan

Distance

Distance

Mean

Cluster

Mean

Figure 6. Block Diagram of Similarity Based Clustering for 

Protein-Ligand Binding Prediction 
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From the PDB dataset firstly we’ve generated images and converted to 128 x 128 images 

for each protein and ligand. From these images we’ve generated 2 different features. 

1) CoMOGrad and PHOG: CoMOGrad stands for Co-occurrence Matrix of the Oriented 

Gradient of Distance Matrices and PHOG stands for Pyramid Histogram of Oriented 

Gradient [6]. This methodology also uses the α carbon distance matrix of protein. The 

dimension of all distance matrix is converted to 128 × 128. In CoMOGrad, the gradient 

angle and magnitude is computed from the distance matrix and the values are quantized. 

Quantization is a compressing technique which compresses a range of values to a single 

quantum value. In this methodology, the values are quantized to 16 bins which produce 

a co-occurrence matrix which is 16 × 16 matrix. The matrix is converted into a vector 

of size 256. Quadtree from the distance matrix is created with the desired level in PHOG. 

Gradient Oriented Histogram of each node is calculated with the preferred number of 

bins and bin size. In gradient oriented histogram an image is divided into small sub-

images called cells and histogram of edge orientations are accumulated within the cell. 

The combined histogram entries are used as the feature vector describing the object. 

Total features which are the multiplication of total nodes and number of bins are 

Pseudocode: 

1. for all proteins & ligands 

2.     generate images & extract features 

3. end for 

4. for each of the given pairs of protein-ligand 

5.     NP = k-nearest protein(s) of the given protein 

6.     RL = k related ligand(s) 

7.     D1 = distance between given ligand & RL 

8.     if D1 < Threshold1 

9.         V1 = vote for positive bind 

10.     else 

11.         V1 = vote for negative bind 

12.     end if 

13.     NL = k-nearest ligand(s) of the given ligand 

14.     RP = k related protein(s) 

15.     D2 = distance between given protein & RP 

16.     if D2 < Threshold2 

17.         V2 = vote for positive bind 

18.     else 

19.         V2 = vote for negative bind 

20.     end if 

21.     MV = weighted majority voting between V1 & V2 

22. end for 
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incorporated in the vector with the size of the total number of features. The vector is 

normalized by dividing it with the sum of its components. 

2) Hybrid Local Binary Pattern (LBP): Hybrid Local Binary Pattern is a procedure of local 

binary pattern histogram, Wavelet transformed Local Binary Pattern Histogram, 

Separate Row Multiplication Matrix with Uniform Local Binary Pattern Histogram and 

Neighbor Block Subtraction Matrix with Uniform Local Binary Pattern Histogram for 

protein structural class prediction that we’ve generated earlier. These are on the distance 

matrix of α carbons of proteins which are used as an image for feature extraction. 

Distance can only be calculated between proteins or between ligands. We’ve used K-nearest 

neighbor and Clustering method to calculate these distances. 

i. Related Ligand(s): For a given Protein, find K-nearest proteins. The ligands those 

binds with the above nearest proteins, are the Related Ligands for the given 

protein. 

 

Figure 7. Relation between given Protein and Related Ligands 

 

ii. Related Protein(s): For a given Ligand, find K-nearest ligands. The proteins those 

binds with the above nearest ligands, are the Related Proteins for the given ligand.  

 

Figure 8. Relation between given Ligand and Related Proteins 
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iii. Distance 1 (Given Protein ~ Related ligand): Distance between related ligand 

and given ligand. 

iv. Distance 2 (Given Ligand ~ Related Protein): Distance between related protein 

and given protein. 

v. Distance formula: two types of distance can be measured. Euclidean (2) and 

Manhattan (3) distance. 

        𝐷𝑖𝑗 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

 (2) 

𝐷𝑖𝑗 = ∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘
|

𝑛

𝑘=1

 (3) 

vi. Distance Mean: Mean of distances between given instance and each of the related 

instances. 

vii. Cluster Mean Distance: Distance between given instance and the cluster mean of 

the related instances. 

viii. Threshold: Threshold is the boundary between similarity and dissimilarity in 

terms of distance. If distance is less than the threshold, then prediction in positive 

similarity, else the prediction is negative similarity. Threshold of each category 

of distances is the average of minimum and maximum distance based on the 

number of nearest neighbors.  

 

For a given pair of Protein and Ligand, we want to predict if the will bind with each 

other or not. For measuring Distance 1, from the given protein, we searched for 5/3-nearest 

proteins and found the 5/3 Related Ligands accordingly. Then we’ve calculated the distance 

using above mentioned methods. Then we’ve taken the vote for the binding class by all 

categories of distances based their thresholds. Then finally, we’ve used weighted majority 

voting mechanism to predict the binding class. 
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Chapter 4 

Results 

4.1 Protein Structural Class Prediction  

In this section, we are going to describe the experiments conducted in this study. Some 

of the experiments were carried out in a Dell Inspiron 15 Laptop Computer of 3000 series 

with 4 GB RAM and 240 GB SSD hard drive, some of them were carried out in Intel Core 

i5 4590 processor personal computer with 12 GB Ram and 2048MB ATI AMD Radeon 

R7 200 Series Graphics Card and others were experimented in a Computing Machine 

provided by CITS, United International University which was equipped with 8 core 

processors each having a Dell R 730 Intel Xeon Processor (E5-2630 V3) with 2.4 GHz 

speed and 18.5 GB memory. Java language is used to implement all the programs using the 

Eclipse IDE and Java 8 standard edition. Features were generated using The OpenCV 

software library [26]. Weka tool [27] was used to implement the classification algorithms 

used in this paper. 

4.1.1 Parameters used for the classifiers 

A different set of parameters were used for each classifier. A linear searching was 

used with no distance weighting for KNN. In case of the Naive Bayesian Classifier, SVM, 

a polynomial kernel was used with c = 1.0 and ϵ = 1.0w−2. Data was normalized before 

supplying to the classifier. J48 decision tree classifier was used in AdaBoost classifier as 

the weak base classifier. Classifier number of iterations was set to 100 for Random Forest. 

4.1.2 Analysis of Features 

In this section, we are we are going to present the analysis of our features. Results 

in terms of average accuracy in 3-fold cross-validation of protein images are given in Table 

3. The highest percentage of correctly classified instances achieved for each of the 

classifiers are indicated by the boldly faced values of the table.  

After running the experiments for our five feature groups ABCDE classifies the 

highest percentage of correct instances in Random Forest, Adaboost and SVM among all 

other feature groups. Feature group CD provides the highest accuracy in KNN and Naive 

Bayesian. As the whole combination of all feature groups accuracy gives the highest 
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percentage than any other feature group, thus we conclude that the best performing feature 

group combination is ABCDE and the best classifier is Random Forest classifier. 

Table 3. Accuracy of different classifiers of protein images 

Image Type Feature Type 
  Classifiers  

KNN Naïve 

Bayesian SVM AdaBoost Random 
Forest 

Non 
Scaled A 68.69 33.15 65.62 83.37 87.50 

Non 
Scaled B 77.28 32.17 67.24 83.52 86.88 

Scaled A 74.06 53.06 78.58 83.30 85.22 
Scaled B 78.69 49.79 79.80 84.68 86.68 
Scaled C 84.10 51.02 71.02 83.20 85.11 
Scaled D 81.58 56.40 72.25 81.89 83.99 

 E 66.96 21.79 44.49 62.26 69.92 

Scaled 
+ 

Non 
Scaled 

AB 78.62 41.87 83.08 83.08 86.08 

Scaled CD 84.65 57.55 78.10 84.24 86.28 
Scaled 

+ 
Non 

Scaled 
ACD 84.51 41.96 81.99 86.97 88.66 

Scaled BCD 81.87 55.02 84.29 85.64 87.37 
Scaled 

+ 
Non 

Sclaed 
ABCD 84.38 36.90 83.53 86.48 88.77 

Scaled 
+ 

Non 
Sclaed 

ABCDE 76.47 36.86 85.78 87.57 89.03 

 

4.1.3 Comparison with other methods 

 In this section, we compare the performance of our proposed method with 

CoMOGrad and PHOG[8] along with our previous published literature Wavelet and 

Pyramid Histogram Features for Image Based Leaf Detection[11]. For comparison with 

our methodology in this literature, we applied CoMOGrad and Phog techniques and 

Wavelet and Pyramid Histogram techniques in our dataset of 11052 instances and later 

applied SMOTE for reducing class imbalance problem. We conducted experiments with 

different classifiers using the same parameters as we did for feature analysis with the 

feature groups. The results are given in Table 4. From Table 4 it can be comprehended that 

our feature group ABCDE outperforms CoMOGrad and PHOG in Random Forest and in 

Adaboost. CoMOGrad and PHOG surpassed our feature groups in KNN, Naive Bayesian 

and SVM. It can be noted that the combination of our feature groups are three-fourths of 
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CoMOGrad and PHOG. It also can be discerned that the accuracy percentage in Random 

Forest is higher than all the classifier results. Thus, our novel features can classify more 

instances than CoMOGrad and PHOG. We have also noticed that our feature groups 

outperform the features of our previous literature [11] on all classifiers. 

Table 4. Comparison of the method proposed features in this paper with [8] and [11] 

Feature Type 

  Classifiers  

KNN 
Naive 

Baysian 
SVM 

Ada 

Boost 

Random 

Forest 

Karim 

et al.[8] 
87.41 59.50 87.67 84.19 85.49 

Ahmed 

et al.[11] 
69.36 36.22 67.30 79.92 84.58 

this paper 84.65 57.55 85.78 87.57 89.03 

 

 

4.1.4 Discussion 

We have revealed the precedence of our methodology over CoMOGrad and PHOG 

[8] and Wavelet and Pyramid Histogram Features for Image Based Leaf Detection [11]. 

The same feature groups were used for leaf detection [11] with the dataset consisting of 

RGB images of leaves. Unlike only gray histogram used on this paper, blue, green and red 

histograms were used to generate features in each feature group and the accuracy result of 

each classifier was high. The distance matrix of α carbons or the protein images were black 

and white, thus only gray histogram was used as a feature. 

We also used Scale-invariant feature transform (SIFT) [28] methodologies in our 

experiments. Each descriptor has a 128-dimensional feature vector. The number of the 

descriptors of SIFT from every image is not specific so we cannot use traditional machine 

learning techniques. Hence to apply traditional machine learning procedure and specify the 

feature vector, we split the image into 16 slices and took one descriptor from each of the 

slice images. Therefore, we got 2048 number of attributes(8x16) from each image. We 

tested the dataset with the same classifiers mentioned in this paper. The results didn’t turn 

up to be better or close to our proposed methodology in this literature. 
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4.2 Protein-Ligand Binding Prediction 

This section is the description of our experiments performed in this study. Some of 

the experiments were carried out in a personal desktop computer having Intel Core i3 and 

4 GB RAM and others were experimented in a Computing Machine provided by CITS, 

United International University which was equipped with 8 core processors each having a 

Dell R 730 Intel Xeon Processor (E5-2630 V3) with 2.4 GHz speed and 18.5 GB memory. 

Java language was used for data preprocessing including feature generation using OpenCV 

software library[7], negative data generation and data merging using Eclipse IDE with Java 

8 standard edition. Python language was used to implement our algorithm using the Spyder 

IDE. Weka tool was used to run the traditional classification algorithms for the comparison 

with our algorithm. We’ve used Leave-One-Out validation method to get the accuracy of 

our model. 

4.2.1 Dependencies/Hyperparameters 

A. Number of nearest neighbors: Our algorithm’s prediction accuracy is highly dependent 

on the number of nearest neighbors for finding both Related Protein(s) and Related 

Ligand(s). We’ve used 5 nearest neighbors in this experiment. 

B. Threshold: This is the threshold of distance for determining whether two proteins or 

two ligands are similar or not. For a higher value of threshold, there is a higher 

possibility for our algorithm to predict positive binding class for the majority of the 

Protein-Ligand pairs. And the lower the threshold is, the higher is the possibility of 

negative binding class prediction. We’ve taken the average of distances among 5 

nearest neighbors as our threshold for each category of the distances. 

4.2.2 Classifiers 

We’ve used traditional machine learning classifiers on the image-based feature dataset 

to compare with our algorithm. Each of them was executed using 10-fold validation. By 

merging both protein and ligand features and adding binding class at the end, we’ve created 

instances for each of the Protein-Ligand pairs. Used classifiers are described below. 

1) Adaptive Boosting (AdaBoost): Adaptive Boosting [8] classifier is a meta-classifier 

which aims for more accurate classification using a group of weak classifiers. The 

weak classifiers are called base classifiers. The accuracy of these weak classifiers 

gradually increases as it acquires knowledge from the previous classifier/iteration. 

Overall classification is generated by weighted voting between the base classifiers. 
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Here, we’ve used J48 as base classifier which is actually the implementation of 

C4.5 algorithm. 

2) K-Nearest Neighbor (KNN): KNN [8] is a weak classifier which is based on 

similarity measurement. Class label of test instance is the majority class label of the 

closest K-neighbors of the training data. Euclidian distance, Manhattan distance, 

Hamming distance etc. are used for similarity measurement. 

3) Random Forest: Random Forest [8] is an ensemble classifier which creates decision 

tree by taking random features. It samples selected features using bootstrap 

aggregation. 

4) Support Vector Machine (SVM): SVM [8] creates a hyperplane between different 

class samples by maximizing the separation width. It classifies test instances using 

that hyperplane/separation line. 

5) Naïve Bayesian: Naïve Bayesian [8] algorithm is actually a probabilistic classifier 

which uses Bayes’ theorem with strong (naive) independence assumption between 

the features. 

4.2.3 Comparison with other Classifiers 

a) With negative data: As we’ve generated negative data for solving the imbalance 

problem. But we’re not sure if those negative data are actually negative or not. This 

was our assumption that all unseen pairs of Proteins and Ligands are of negative 

class. So, these are actually noisy data and will result in low accuracy. But we’ve 

used this noisy data as our advantage to get the threshold that determines the 

similarity. In this case, Distance1 (Given L ~ Related L) -> Manhattan Distance -> 

Distance mean works best. In spite of low performance with negative data, our 

algorithm works better than other existing widely used algorithms shown in Table 

5 and Chart I. 

b) Without Negative Data (Sensitivity): Sensitivity is the true positive rate regarding 

the positive instances. As we had to generate the negative data artificially, 

sensitivity is the actual scale of performance measuring where positive data were 

the actual data. In this case, Weighted voting of both Distance1 (Given L ~ Related 

L) and Distance2 (Given P ~ Related P) based on Manhattan Distance -> Cluster 

mean works best. Using the thresholds gained using the negative data, sensitivity 

of our algorithm is very good comparing to other existing algorithms shown in 

Table 6 and Chart II. 
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Table 5. Accuracy Comparison Table 

Features 
AdaBoost 

(J48) 
KNN (5) 

Random 
Forest 

SVM 
Naïve 

Bayesian 

Our 
Method 

(5) 

Our 
Method 

(3) 

LBP 
(random) 

40.70% 36.50% 31.85% 39.87% 43.98% 56.07% 56.99% 

LBP 
(cluster) 

43.76% 45.42% 40.77% 41.14% 49.06% 55.65% 58.11% 

CoMOGrad 
& PHOG 

(random) 
49.17% 47.54% 14.56% 34.26% 47.61% 59.03% 57.33% 

 

 

Table 6. Sensitivity Comparison Table 

Features 
AdaBoost 

(J48) 
KNN (5) 

Random 
Forest 

SVM 
Naïve 

Bayesian 

Our 
Method 

(5) 

Our 
Method 

(3) 

LBP 
(random) 

38.50% 36.80% 33.60% 43.80% 54.70% 84.40% 84.50% 

LBP  
(cluster) 

43.76% 38.40% 41.50% 37.40% 43.60% 83.69% 84.37% 

CoMOGrad & 
PHOG 

(random) 
95.20% 47.60% 16.10% 29.70% 11.30% 79.86% 78.31% 
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 We have generated three different datasets based on three different features. Hybrid LBP 

gives 630 long feature vectors from image. So, for one protein-ligand pair we’ve got 1260 

(630+630) attributes and one Binding Class value as one instance. The above mentioned 

two types of negative data (random and Clustering-Based Undersampling) were generated 

using Hybrid LBP for balancing the data. CoMOGrad and PHOG gives 1021 or 1020 long 

feature vectors from protein image, but for ligand images, it gives 1020 long feature vectors. 

We assumed “0” as the last feature in protein where features were 1020 long, to make it 

1021 long feature. So, for one protein-ligand pair we’ve got 2041 (1021+1020) attributes 

and one Binding Class value as one instance. Random negative undersampling was used in 

CoMOGrad and PHOG but Clustering-Based Undersampling was not possible as some 

clusters couldn’t get any unseen pairs of protein and ligand. Our method was used based on 

5 and 3 nearest neighbors and shown on the above tables and charts. 

 We can see that; AdaBoost works better than our algorithm in terms of sensitivity 

in ComoGrad and PHOG dataset. Because, Ligand data were so small in terms of number 

of atoms that ComoGrad and PHOG gave zeros for most of the ligands. But our algorithm’s 

overall performance is better than other machine learning algorithms in the three different 

feature datasets 
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Chapter 5 

 

Conclusion 

5.1 Protein Structural Class Prediction 

In this thesis, we showed how accurately we can detect protein classes using the 

combination of our feature group ABCDE of protein images. As the advancement of deep 

learning, neural network, and many other deep learning techniques are being used to 

classify images, many remarkably interesting applications can be made. For our future 

advancement, we wish to introduce new features to improve accuracy, use new tools and 

explore other fields of computer vision such as human emotion detection. 

5.2 Protein-Ligand Binding Prediction 

We are proposing a simple similarity-based clustering method to predict Protein-Ligand 

Binding without using deep-learning, neural-network. This simple distance-based 

algorithm is quite effective compared to complex machine learning algorithms. 

Our main limitation was the missing negative data. If we had the actual negative data, 

we could’ve determined the perfect thresholds for each category of distances, and that 

would give us more accurate prediction. Another problem was dimensions of small Ligands 

as we’re using image-based features. 

In future, we will try to extract some unique features from the Ligand dataset so that the 

dimensionally problem doesn't affect our Protein-Ligand binding prediction. 

  



 31 

References 

[1]   C. Chothia and A. M. Lesk, “The relation between the divergence of sequence and 

structure in proteins.” The EMBO journal, vol. 5, no. 4, pp. 823–826, 1986.  

[2]   G. P. Brady and P. F. Stouten, “Fast prediction and visualization of protein binding 

pockets with pass,” Journal of computer aided molecular design, vol. 14, no. 4, pp. 

383–401, 2000.  

[3]   L. Holm and C. Sander, “Protein structure comparison by alignment of distance 

matrices,” Journal of molecular biology, vol. 233, no. 1, pp. 123–138, 1993.  

[4]   W. R. TAYLOR, “Protein structure comparison using iterated double dynamic 

programming,” Protein Science, vol. 8, no. 3, p. 654–665, 1999.  

[5]   S. Srivastava, S. B. Lal, D. Mishra, U. Angadi, K. Chaturvedi, S. N. Rai, and A. Rai, 

“An efficient algorithm for protein structure comparison using elastic shape analysis,” 

Algorithms for Molecular Biology, vol. 11, no. 1, p. 27, 2016.  

[6]   L. Holm and C. Sander, “Dali/fssp classification of three-dimensional protein folds,” 

Nucleic acids research, vol.25, no.1, pp. 231–234, 1997.  

[7]   A. P. Singh and D. L. Brutlag, “Hierarchical protein structure superposition using both 

secondary structure and atomic representations.” in Ismb, vol. 5, 1997, pp. 284–293.  

[8]   R. Karim, M. M. A. Aziz, S. Shatabda, M. S. Rahman, M. A. K. Mia, F. Zaman, and S. 

Rakin, “Comograd and phog: From computer vision to fast and accurate protein tertiary 

structure retrieval,” Scientific Reports, vol. 5, pp. 13275 EP –, Aug 2015, article. 

[Online]. Available: http://dx.doi.org/10.1038/srep13275  

[9]   C.-R. Shyu, P.-H. Chi, G. Scott, and D. Xu, “Protein dBs: a real time retrieval system 

for protein structure comparison,” Nucleic Acids Research, vol. 32, no. suppl_2, pp. 

W572–W575, 2004.  

[10]   P.-H. Chi, G. Scott, and C.-R. Shyu, “A fast protein structure retrieval system using 

image-based distance matrices and multidimensional index” International Journal of 

Software Engineering and Knowledge Engineering, vol. 15, no. 03, pp. 527–545, 2005.  

[11]   A. A. N. Ahmed, H. M. F. Haque, A. Rahman, M. S. Ashraf, and S. Shatabda, “Wavelet 

and pyramid histogram features for image-based leaf detection,” in Emerging 

Technologies in Data Mining and Information Security, A. Abraham, P. Dutta, J. K. 

Mandal, A. Bhattacharya, and S. Dutta, Eds. Singapore: Springer Singapore, 2019, pp. 

269–278.  

http://dx.doi.org/10.1038/srep13275


 32 

[12]   I. N. Shindyalov and P. E. Bourne, “Protein structure alignment by incremental 

combinatorial extension (ce) of the optimal path.” Protein engineering, vol. 11, no. 9, 

pp. 739–747, 1998.  

[13]   C. A. Orengo and W. R. Taylor, “[36] ssap: sequential structure alignment program for 

protein structure comparison,” in Methods in enzymology. Elsevier, 1996, vol. 266, pp. 

617–635.  

[14]   Y. Ye and A. Godzik, “Flexible structure alignment by chaining aligned fragment pairs 

allowing twists,” Bioinformatics, vol. 19, no. suppl_2, pp. ii246–ii255, 2003.  

[15]   M. Shatsky, R. Nussinov, and H. J. Wolfson, “Flexible protein alignment and hinge 

detection,” Proteins: Structure, Function, and Bioinformatics, vol. 48, no. 2, pp. 242–

256, 2002.  

[16]   Y. Zhang and J. Skolnick, “Tm-align: a protein structure alignment algorithm based on 

the tm-score,” Nucleic acids research, vol. 33, no. 7, pp. 2302–2309, 2005.  

[17]   L. Zhang, J. Bailey, A. S. Konagurthu and K. Ramamohanarao, “A fast indexing 

approach for protein structure comparison,” BMC bioinformatics, vol. 11, no. 1, p. S46, 

2010.  

[18]   Y. Yang, J. Zhan, H. Zhao and Y. Zhou, “A new size independent score for pairwise 

protein structure alignment and its application to structure classification and nucleic-

acid binding prediction,” Proteins: Structure, Function, and Bioinformatics, vol. 80, no. 

8, pp. 2080–2088, 2012.  

[19]   N. K. Fox, S. E. Brenner, and J.-M. Chandonia, “Scope: Structural classification of 

proteins—extended, integrating scop and astral data and classification of new 

structures,” Nucleic acids research, vol. 42, no. D1, pp. D304–D309, 2013. 

[20]   T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation 

invariant texture classification with local binary patterns,” IEEE Transactions on 

pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–987, 2002.  

[21]   T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture 

measures with classification based on kullback discrimination of distributions,” in 

Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image 

Processing., Proceedings of the 12th IAPR International Conference on, vol. 1. IEEE, 

1994, pp. 582–585.  

[22]   R. S. Stanković and B. J. Falkowski, “The haar wavelet transform: its status and 

achievements,” Computers & Electrical Engineering, vol. 29, no. 1, pp. 25–44, 2003.  

[23]   W. Sweldens, “The lifting scheme: A construction of second-generation wavelets,” 

SIAM journal on mathematical analysis, vol. 29, no. 2, pp. 511–546, 1998.  



 33 

[24]   N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, “Smote: synthetic 

minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, 

pp. 321–357, 2002.  

[25]   M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT 

press, 2012.  

[26]   G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.  

[27]   M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The 

weka data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 

11, no. 1, pp. 10– 18, 2009.  

[28]   D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International 

journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004. 

[29]   Chaires, J.B. Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 

2008, 37, 135–151 

[30]   Patching, S.G. Surface plasmon resonance spectroscopy for characterisation of 

membrane protein-ligand interactions and its potential for drug discovery. Biochim. 

Biophys. Acta 2014, 1838, 43–55 

[31]   Rossi, A.; Taylor, C. Analysis of protein-ligand interactions by fluorescence 

polarization. Nat. Protoc. 2011, 6, 365–387 

[32]   Sousa,S.F.;Ribeiro,A.J.;Coimbra,J.T.;Neves,R.P.;Martins,S.A.;Moorthy,N.S.;Fernand

es,P.A.;Ramos,M.J. Protein-ligand docking in the new millennium-a retrospective of 

10 years in the field. Curr. Med. Chem. 2013, 20, 2296–2314 

[33]   Steinbrecher, T.; Labahn, A. Towards accurate free energy calculations in ligand 

protein-binding studies. Curr. Med. Chem. 2010, 17, 767–785 

 


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	1.1 Protein Structural Class Prediction
	1.2 Protein-Ligand Binding Prediction

	Background and Literature Review
	2.1 Biological background
	2.1.1 Protein
	2.1.2 Ligand
	2.1.3 Protein Structure

	2.2 Protein Structural Class Prediction
	2.3 Protein-Ligand Binding Prediction
	2.2.1 Background
	2.2.2 Related Work


	Methodology
	3.1 Protein Structural Class Prediction
	3.1.1 Dataset
	3.1.2 Image Generation
	3.1.3 Scaling Images to Same Dimension
	3.1.4 Feature Extraction
	3.1.5 Re-evaluate Dataset
	3.1.6 Removing Multiclass Imbalance Problem
	3.1.7 Classifiers
	3.1.8 Performance Evaluation

	3.2  Protein-Ligand Binding Prediction
	3.2.1 Dataset
	3.2.2 Data pre-processing
	3.2.3 Our Classifier


	Results
	4.1 Protein Structural Class Prediction
	4.1.1 Parameters used for the classifiers
	4.1.2 Analysis of Features
	4.1.3 Comparison with other methods
	4.1.4 Discussion

	4.2 Protein-Ligand Binding Prediction
	4.2.1 Dependencies/Hyperparameters
	4.2.2 Classifiers
	4.2.3 Comparison with other Classifiers


	Conclusion
	5.1 Protein Structural Class Prediction
	5.2 Protein-Ligand Binding Prediction

	References

