
Public Sentiment Analysis Based
on Social Media Reactions for

Bangla Natural Language

Md. Tazimul Hoque
Student Id: 012161021

Department of Computer Science and Engineering
United International University

A thesis submitted for the degree of
M.Sc. in Computer Science & Engineering

June 2020
© Md. Tazimul Hoque, 2020

Approval Certificate
This thesis titled “Public sentiment analysis based on social media reactions for
Bangla natural language” submitted by Md. Tazimul Hoque, Student ID: 012161021,
has been accepted as Satisfactory in fulfillment of the requirement for the degree of
Master of Science in Computer Science and Engineering.

Board of Examiners

1.
Dr. Mohammad Nurul Huda Supervisor
Professor & Director - MSCSE
Department of Computer Science & Engineering (CSE)
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

2.
Dr. Md. Saddam Hossain Mukta Head Examiner
Assistant Professor
Department of Computer Science & Engineering (CSE)
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

3.
Dr. Swakkhar Shatabda Examiner-I
Associate Professor & Undergraduate Program Coordinator
Department of Computer Science & Engineering (CSE)
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

4.
Rubaiya Rahtin Khan Examiner-II
Assistant Professor
Department of Computer Science & Engineering (CSE)
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

5.
Dr. Salekul Islam Ex-Officio
Professor & Head of the Dept.
Department of Computer Science & Engineering (CSE)
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

i

Declaration

I, Md. Tazimul Hoque, declare that this thesis titled, “Public sentiment analysis
based on social media reactions for Bangla natural language” and the research
work presented in it are my own. I confirm that:

• This research work was completed while in candidature for a M.Sc. degree at
United International University.

• Where any portion of this research work has been submitted previously for any
degree or any other qualification at United International University or any other
institution, this has been clearly mentioned.

• Where I have discussed any published work of other researchers, this is properly
attributed in my writings.

• Where I have quoted from the work of others, the source is always given as ref-
erence. With the exception of such quotations, this research work is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date: 25 June, 2020

Md. Tazimul Hoque
Department of Computer Science and Engineering
Masters of Science in Computer Science & Engineering
Student ID: 012161021
United International University (UIU)
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

ii

Abstract

Representing text documents as vector or in numerical format has been a revolution in
natural language processing. It represents similar parts of text in such a way that they
are very close to each other, making it very easy to classify or find similarities among
them. These vectors also represent the way we use the words or parts of documents as
well which helps finding similarity even between pair of words. While word2vec is such
a technique that represents each word as a vector, doc2vec takes it to another level by
representing a whole sentence or document as a vector. Being able to represent an entire
document as a vector allows comparing a substantial number of words or sentences at a
time which can save computational power as well as bandwidth. This relatively newer
doc2vec technology has not yet been implemented for Bengali sentiment analysis and its
feasibility is also unknown. In this study, we have trained doc2vec and word2vec models
using a corpus constructed with 10500 Bengali documents. The corpus consists of three
types of data differentiated by their polarity i.e. positive, negative and neutral. Later,
we have employed several machine learning algorithms for comparing the accuracy of
classification. To evaluate machine learning classifiers performance, we’ve applied k-
fold cross validation technique. In k-fold cross validation we’ve used document vectors
directly obtained from doc2vec model, and TF-IDF averaged document vectors gained
from word2vec model.

iii

Published Papers

Work relating to the research presented in this thesis has been published by the author
in the following peer-reviewed conference:

1. Hoque, M. T., Islam, A., Ahmed, E., Mamun, K. A., and Huda, M. N. (2019,
February). Analyzing Performance of Different Machine Learning Approaches
With Doc2vec for Classifying Sentiment of Bengali Natural Language. In 2019 In-
ternational Conference on Electrical, Computer and Communication Engineering
(ECCE) (pp. 1-5). IEEE.

iv

Acknowledgements

Firstly I’m grateful and expressing my gratitude to Almighty Allah for giving me the
strength to complete this research work successfully.

My research work titled “Public sentiment analysis based on social media reac-
tions for Bangla natural language” has been completed to fulfill the requirement of
MS CSE program. I’m thankful to the people from whom I received guidance, coopera-
tion and suggestions throughout the journey.

I would like to express my gratitude to my thesis supervisor, Dr. Mohammad Nurul
Huda, Professor & Director - MSCSE, Dept. of CSE, United International University,
for his supervision, continuous support, encouragement and giving me the opportunity
to do this research work with him.

Finally, I’m very much thankful to my parents for their encouragement, continuous
support and endless love.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Objectives . 2
1.3 Contribution . 2
1.4 Organization of the Thesis . 3

2 Background Materials 4
2.1 Literature Review . 4

2.1.1 Non-Bengali Languages . 4
2.1.2 Bengali Language . 4

2.2 Natural Language Processing . 5
2.3 Sentiment Analysis . 6

2.3.1 Different Levels of Sentiment Analysis 6
2.3.1.1 Document level . 6
2.3.1.2 Sentence level . 6
2.3.1.3 Entity level . 7

2.4 Corpus Construction . 7
2.4.1 Scripting . 7
2.4.2 Prepossessing . 7
2.4.3 Data Set Labeling . 8

2.5 Data Model Construction . 8
2.5.1 Word Embedding Techniques . 8

2.5.1.1 Word2Vec . 8
2.5.1.2 Sentence2Vec . 9
2.5.1.3 Doc2Vec . 10

2.6 Types of Machine Learning Algorithms . 11
2.6.1 Supervised Machine Learning . 11
2.6.2 Unsupervised Machine Learning 11
2.6.3 Semi-supervised Machine Learning 11
2.6.4 Reinforcement Machine Learning 12

2.7 Machine Learning Tools for Classification 12
2.7.1 Regular Machine Learning Classifiers 12

2.7.1.1 Logistic Regression (LR) 12

vi

2.7.1.2 Linear Discriminant Analysis (LDA) 13
2.7.1.3 Support Vector Machine (SVM) 13
2.7.1.4 K-Nearest Neighbors . 14
2.7.1.5 Decision Tree (DT) . 14
2.7.1.6 Gaussian Naive Bayes (GaussianNB) 15

2.7.2 Deep Learning Classifiers . 16
2.7.2.1 Long Short-term Memory (LSTM) 16
2.7.2.2 Bidirectional Long Short-term Memory (BLSTM) 17
2.7.2.3 Sequential Model (SM) 17

2.8 Performance Evaluation . 18
2.8.1 Confusion Matrix . 18
2.8.2 Precision . 19
2.8.3 Recall . 19
2.8.4 F1-Score . 19
2.8.5 Accuracy . 19
2.8.6 Macro Average for Precision, Recall and F1-score 20
2.8.7 k-Fold Cross Validation . 20

2.9 Summary . 21

3 Proposed Method 22
3.1 Overview of proposed system . 22
3.2 Corpus Creation . 22

3.2.1 Data Collection . 23
3.2.2 Data Filtering . 23
3.2.3 Data Labeling . 23

3.3 Data Model Selection . 24
3.4 Choosing Machine Learning Classifiers . 24
3.5 Result and Performance Evaluation . 24
3.6 Summary . 24

4 Experimental Analysis 25
4.1 Experiments . 25

4.1.1 Corpus Construction . 25
4.1.2 Model Generation . 27

4.1.2.1 TF-IDF Averaged Word2vec Model 28
4.1.2.2 Doc2vec Model . 30

4.1.3 Classifier Design . 32
4.1.4 Summary . 34

4.2 Result and Analysis . 34
4.2.1 k-Fold Cross Validation . 34

4.2.1.1 10-Fold Cross Validation - TF-IDF Averaged Word2vec . 35
4.2.1.2 10-Fold Cross Validation - Doc2vec 35

4.2.2 Doc2vec vs TF-IDF Averaged Word2vec 36
4.2.3 Discussion . 37
4.2.4 Summary . 39

5 Conclusion and Future Work 40

vii

5.1 Conclusion . 40
5.2 Limitations . 40
5.3 Future Work . 41

A My Publications 46

viii

List of Figures

2.1 Architecture of CBOW and Skip-gram [1] 9
2.2 PV-DM [2] . 10
2.3 PV-DBOW [2] . 10
2.4 doc2vec model with tag vector [3] . 11
2.5 LSTM block containing input, output and forget gates [4] 17
2.6 BLSTM classifier design [5] . 17

3.1 Proposed architecture of our research work 23

4.1 Flow of data collection and corpus preparation from Facebook post. . . . 26

ix

List of Tables

2.1 Confusion Matrix for Binary Class Classifier 18

4.1 10-fold accuracy scores for TF-IDF averaged document vectors (Word2vec) 35
4.2 10-fold mean performance scores for TF-IDF averaged document vectors

(Word2vec) . 35
4.3 10-fold accuracy scores for doc2vec document vectors 36
4.4 10-fold mean performance scores for doc2vec document vectors 36
4.5 Comparison of 10-fold mean accuracy scores gained for TF-IDF averaged

word2vec and doc2vec models . 37

x

List of Algorithms

1 Preparing Positive/Negative Documents from Facebook Page Posts 28
2 Checking a post is either categorizable or not 28

xi

Chapter 1

Introduction

This chapter represents an overview of introductory aspects of our research work in
sentiment analysis. It includes current problem statements, motivation to work in this
topic, aim and objectives of our work and about the contributions we made by this
research. Organization of the thesis section gives an brief outline for remaining chapters
of the book.

1.1 Motivation

In recent years, various social media platforms e.g. Facebook, YouTube, Twitter play
a vital role in day to day life due to their ease-of-access, portability, and affordability
[6, 7]. According to Statistic, around 2.46 billion people are actively using social media
worldwide as of 2017 and it is expected to reach 3.02 billion in 2021 where Facebook
has remained the most popular one as of April, 2018 [8]. Another survey conducted in
September 2018 by StatCounter says that 89.04% of social media users interact using
Facebook in Bangladesh [9]. A very large number of data has been comprised over the
Internet as a result of enormous dealing with social media platforms which conveys a
significant contribution in Sentiment analysis (SA) [6]. To be specific, analyzing the
reactions by users accumulated from social media contents and posts lead to categorize
them into several labels i.e. sad, angry, love.

Sentiment analysis is also known as opinion mining, mood or emotion analysis which is a
well-known part of Natural Language processing (NLP). The year 2001 or around can be
marked as the beginning of the research awareness in the field of SA and opinion mining
[10]. Research papers mentioning “sentiment analysis” focus specifically on the appli-
cation of text classification according to their polarity positive (good), negative (bad)
or neutral. But now-a-days SA expresses broadly to mean the computational treat-
ment of public opinion or review in textual format, processing natural language data,

1

computational linguistics and bio-metrics to systematically extract, identify, quantify
and study effective states with subjective information [11]. In addition, recent advents
in machine learning research, particularly deep learning based methods e.g. recurrent
neural network (RNN), avail the opportunities to infer decisions by training a model
in SA. Moreover, the latest key technique titled as “doc2vec” developed by Google Inc.
[12] in which usually a document is represented by a vector, can be an emerging tactics
for classifying emotions or opinions from social media reactions and posts. Although a
lot of research work has been conducted in the area of SA and they are mainly based
on the social media posts written in English, still these areas are yet to be explored for
the social media posts in Bengali language.

1.2 Aim and Objectives

The main goal of this experiment is to create and transform data corpus to suitable
document embedding model representing numeric vector, hence analysing different ma-
chine learning techniques to evaluate the performance and accuracy of the classifiers in
the context of Bengali sentiment analysis. Objective of our study can be pointed as -

• Create a standard Bengali sentiment classification corpus.

• Categorizing documents according to selective human sentiments.

• Construct document embedding model representing numeric vectors to work with
machine learning algorithms.

• Analysing performance of deep learning and traditional machine learning ap-
proaches for Bengali sentiment analysis.

1.3 Contribution

Our work includes system literature review process and we followed standard steps for
searching, screening, raw data-extraction, model generation, experimenting with differ-
ent ML classifiers and reporting accordingly. At initial step, we searched for relevant
papers, research reports, journals, presentations that were broadly concerned with sen-
timent analysis or opinion mining. Relevant research articles were searched into IEEE
Explorer, ACM Portal, Springer Linker, Science Direct and Google Search Engine. Sys-
tematic search strategy applied to achieve consistent best search results. Search key-
words and phrases were selected according to our desired research interest.

This research aims to analyze public sentiments composed in Bengali on any topic and
then categorize them into three particular classes i.e. positive, negative and neutral sen-
timent. For this we are considering Facebook post reactions – Love, Wow, Sad, Angry,

2

and Haha which represent different states of emotion. Here, Love and Wow reactions
are considered as positive sentiment whilst Sad and Angry reactions are considered as
negative sentiment. Facebook added these new reactions feature allowing users to re-
act along with Like in a post. We have employed different machine learning methods
i.e. Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), K-
Neighbors, Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GaussianNB),
Sequential Model (SM), Long Short-term Memory (LSTM), and Bidirectional Long
Short-term Memory (BLSTM) to build classification models so that they can classify
the sentiments from users’ reactions in different posts published in Bengali.

Our work can be defined into the following phases:

• Corpus construction phase: This phase includes corpus collection, filtering, label-
ing raw corpus according to sentiment score.

• Model generation phase: This phase focus on choosing and constructing suitable
data model representing numeric vectors to work with ML classifiers.

• Experiment phase: This last phase applies different ML classifiers with selected
data models to classify sentiment into classes. We briefly discussed about the
performance and resulted accuracy of the employed ML classifiers in this step.

1.4 Organization of the Thesis

This experimental thesis work is distributed into rest of the chapters following the below
sequence:

• Chapter 2 presents literature review and background study of machine learning
tools and technology we used for this experiment.

• Chapter 3 describes about our proposed work flow for this experiment.

• Chapter 4 represents details about our experimental work & discussion about re-
sult and performance of employed document embedding systems & machine learn-
ing classifiers.

• Chapter 5 presents conclusion, limitation and future work of this thesis.

3

Chapter 2

Background Materials

2.1 Literature Review

Previously accomplished research works related to sentiment analysis or opinion mining
are discussed in this section.

2.1.1 Non-Bengali Languages

Many research works are accomplished by measuring the overall polarity of a document
or sentence to determine if it is a positive or negative review [13, 14, 15]. Turney et al.
used simple unsupervised learning algorithm which finds average semantic orientation
of the phrases form the review containing adjectives or adverbs [13]. In system [14] Dave
et al. trained a classifier using a self-tagged corpus of reviews form web sites. Pang et al.
applied machine learning approach for textual data categorization to identify the subjec-
tive portions of any document [15]. Phrase-level sentiment analysis is discussed in [16]
which can identify contextual sentiment polarity for a given large subset of sentiment
expression. In their work they explained that contextual polarity of a phrase may be dif-
ferent from the polarities of the words appear in that phrase. Some popular approaches
of sentiment analysis – subjective lexicon, using N-Gram modeling, machine learning
are discussed in [17]. Using deep learning model, Ouyang et al. proposed a framework
“word2vec + Convolutional Neural Network (CNN)” [18] for classifying sentiment of
movie reviews into fives labels: positive, somewhat positive, negative, somewhat nega-
tive and neural. They achieved 45.4% accuracy.

2.1.2 Bengali Language

Though a lot of works have been explored considering the research works for Bengali in
this ground, very few experiments have been investigated in recent years. Chowdhury

4

et al. worked on sentiment analysis in Bengali microblog posts using SVM and Maxi-
mum Entropy (MaxEnt) classification techniques [19]. They collected 1,300 tweets using
Twitter API and split the dataset as 1,000 tweets for training and 300 tweets for testing.
They identified the overall polarity of a sentence as either negative or positive. Their
achieved accuracy is 93% for SVM using unigrams with emoticons as features. Das et
al. developed a phrase level polarity classification system using SVM [20]. They con-
structed a Bengali News corpus containing 3,435 distinct word-forms. It can categorize
opinion phrase as either positive or negative. Their evaluated result have a precision
of 70.04% and a recall of 63.02%. Amin et al. used ”word2vec” model for vector rep-
resentation of Bengali words [21]. They achieved 75.5% of accuracy using ”word2vec”
word co-occurrence score with the words sentiment polarity score. They collected 16,000
Bengali single line and multiline comments from blog posts and tagged them as positive
or negative comment by a survey. Hassan et al. used deep recurrent model Long Short
Term Memory (LSTM), with two loss functions – binary cross-entropy and categorical
cross-entropy for Bengali sentiment analysis [22]. They used 10,000 Bengali and Roman-
ized Bengali text samples which were divided into three categories - Positive, Negative
and Ambiguous. They achieved 70% accuracy with Bengali dataset and using Bengali
and Romanized Bengali dataset the accuracy score was 55%.

2.2 Natural Language Processing

Natural Language Processing (NLP), is a branch of artificial intelligence (AI). Using
natural language, NLP deals with the interaction between computers and human. The
main purpose of NLP is to read, understand and make sense of the human languages to
represent it in a valuable manner. It uses machine leaning techniques to derive meaning
from human languages. Few useful applications derived from NLP :

• Search engine, spell checker, keyword search, questions answering system

• Speech recognition applications, intelligent personal assistants

• Chat bots for customer support, device controlling, ordering goods.

• Recommendation system based on human behavior

• Human sentiment analysis

• Financial risks or fraud detection

• Market prediction based on information retrieved from websites such as products,
price location, dates etc.

• Spam detection and data filtering applications

5

2.3 Sentiment Analysis

A popular topic of Natural Language Processing (NLP) is Sentiment Analysis (SA)
which is also recognized as Opinion Mining. Sentiment Analysis identifies and extracts
information like opinion, subjectivity, polarity from textual data. Here polarity can be
defined as a measurement unit of sentiment or emotion.

Using sentiment analysis, unstructured data can be extract and transformed into struc-
tured information of public opinions about news, products, services, brands, politics or
any topic that people can express opinions about. This information can be valuable for
commercial applications like -

• Market analysis

• Product reviews and feedback

• Movie review

• Public relations

• Customer service

2.3.1 Different Levels of Sentiment Analysis

Sentiment analysis can be applied in different levels e.g. document, sentence and entity
level. Each of this level represents its own characteristics regarding opinion mining.

2.3.1.1 Document level

Document level opinion categorization refers to the overall sentiment classification of
the full document. For example, given an elaborate movie review, a sentiment analysis
system identifies whether user review expresses an overall positive or negative senti-
ment about that movie. This level of sentiment analysis considers that each document
represents opinion on a single entity. Document level classification doesn’t evaluate or
compare sentiments in its entity level.

2.3.1.2 Sentence level

The task of sentence level sentiment analysis is to determine whether each sentence
expresses a single unit of opinion like - positive, negative or neutral. Here neutral
generally means no opinion/sentiment at all. Sentence level classification is very closely
related with subjectivity classification, that distinguishes sentences which express factual

6

information. It is noted that subjectivity is not equivalent to opinion as many objective
sentences may express opinion.

2.3.1.3 Entity level

Document and sentence level sentiment analyses can’t identify what exactly a person
liked and did not like. Entity level sentiment analysis looks directly at option itself
instead of looking at language construction like - documents, paragraphs, sentences,
clauses or phrases. Here the main idea is an opinion consists of a sentiment (emotion)
and a target (of that sentiment). Opinion without any target being identified as of
limited use. The importance of opinion targets also helps us to understand sentiment
classification problem more better. For an example, “I enjoyed the food, though the
restaurant environment was not that good.” - clearly this sentence has a positive opin-
ion, but we cannot say that the statement is entirely positive. The sentence tells positive
opinion about the food, but expresses negative opinion about the service of that restau-
rant. So the purpose of entity level sentiment analysis is clearly to discover sentiments
on entities.

2.4 Corpus Construction

A well constructed data corpus has great impact on machine learning approaches, re-
sulted better performance with high accuracy. In our experiment we constructed a raw
corpus using social media as our primary data source. Steps for a corpus construction
are discussed below.

2.4.1 Scripting

Scripting refers to the process by which raw data is collected from different websites. We
used python language to write script which collected necessary data from online pages
periodically.

2.4.2 Prepossessing

Prepossessing is an important part of corpus construction. It includes filtering data to
reduce noise from data set. Prepossessing helps to make a solid corpus with relevant
data only. The filtering rules are defined as per research requirement. We applied the
following rules -

• Removing Hyper links.

7

• Removing Special characters

• Checking for only Bengali Phonetics

• Checking duplicate data entry

2.4.3 Data Set Labeling

We applied supervised machine learning approaches that required labeled data. La-
belling a data set refers to the process which maps a single unit data to some predefined
class. This mapping can be one-to-one or one-to-many. One-to-one represents a single
unit of data to only one class where one-to-many represents an unit of data can belongs
to multiple class.

2.5 Data Model Construction

In natural language processing one of the key ideas is how efficiently texts can be con-
verted into numeric vectors so that it can be fed into different machine leaning techniques
to perform training and classification. As our corpus contains raw textual data, we had
to prepare a suitable data model to work with machine learning algorithms. We looked
for different word embedding systems which can represent textual data to numerical
vectors.

2.5.1 Word Embedding Techniques

Word embedding system, representations of words as vectors in a predefined vector
space, learned by exploiting large amounts of text. This learning technique for texts can
represent words having same meaning, using a similar representation. All the words are
mapped into one vector and then the vector values are learned by the system in a way
that creates a neural network.

2.5.1.1 Word2Vec

One of the latest key techniques for word embedding is word2vec developed by Google
[23]. word2vec consists of two different methods: Continuous Bag of Words (CBOW)
and Skip-gram.

• Skip-Gram : Skip-gram predicts a window of words given a single word. Let’s
consider a sentence “He is a very good boy” and a window size of six. Now if we

8

consider the word “good” as input then Skip-gram should predict: “he”,“is”, “a”,
“very”, “boy”.

• Continuous Bag of Words (CBOW) : In converse, CBOW can predict a word
given surrounding words. The center word vector is generated by the sum of
context words.

For their classification algorithm both methods use artificial neural networks. Initially
each word is assigned to a random N- dimensional vector. During the training period,
using the CBOW or Skip-gram methods, the algorithm learns the optimal vector for
each word.

Figure 2.1: Architecture of CBOW and Skip-gram [1]

It takes text corpus as input, and provides a set of vectors as output. The output vectors
are feature vectors for the words containing in that corpus. word2vec itself is not a deep
neural network. It converts text into a numerical form which deep neural networks can
understand and process further. It can group the vector of similar words together which
can detect similarities mathematically. By providing enough data, usage and contexts,
word2vec can provide highly accurate output for any input words meaning or similarity
/ association with other words based on past appearance. Thus this prediction can be
used to cluster documents and classify them by topic or label. Those clusters can be used
for the fundamental basis of sentiment analysis, search engine, document classification
and other diverse fields of scientific research.

2.5.1.2 Sentence2Vec

A new model for sentence embedding called sentence2vec [24] is introduced which uses
unsupervised learning of sentence embedding using compositional n-gram features. To
train distributed representations of sentences, sentence2vec presents an efficient unsu-
pervised objective. It is an extension of word2vec (CBOW) to sentences. The average of

9

the source word embedding of its constituent words is defined as sentence embedding.
This model is augmented by learning source embedding for not only uni-grams but also
n-grams of words present in each sentence, and averaging the n-gram embedding along
with the words.

2.5.1.3 Doc2Vec

Goal of doc2vec [25] is to make numeric vector representation of documents, regardless
of each documents length. This technique is an adaptation of word2vec. For doc2vec
training it requires a set of documents. For each word a word vector W is prepared
and for each document a document vector D is prepared. doc2vec model by itself is an
unsupervised method. doc2vec also comes with two different approaches used to built the
vector model - Paragraph Vector Distributed Memory (PVDM) and Paragraph Vector
Distributed Bag of Words (PV-DBOW).

• PV-DM : PV-DM predicts the center word from the set of context words in
given document and a document id. PV-DM approach should perform consistently
better than the following PV-DBOW approach mentioned in [12].

Figure 2.2: PV-DM [2]

• PV-DBOW : PV-DBOW determines the context probability with given para-
graph or document, but ignores context words from input document.

Figure 2.3: PV-DBOW [2]

10

Tags can be assigned for each documents in doc2vec and we can easily get their repre-
sentation as vectors. Figure -2.4 shows doc2vec representation with tag vector.

Figure 2.4: doc2vec model with tag vector [3]

2.6 Types of Machine Learning Algorithms

Machine learning algorithms can gain information from data and improve their outcome
from experience without human mediation. Different machine learning techniques are
described below.

2.6.1 Supervised Machine Learning

Supervised learning algorithm operates under direct supervision which is - a set of labeled
data corpus is fed into the system with some strict rule to operate. After analyzes
training data-set, supervised learning algorithm produces an inferred function, which
can be used for mapping new inputs.

2.6.2 Unsupervised Machine Learning

In unsupervised machine learning, system is trained with unlabeled data. The system
will be able to classify new inputs after it learns patterns from data. It is particularly
useful in cases where we don’t know what to look for in data-set. Two main methods
are employed in unsupervised learning - principal component and cluster analysis.

2.6.3 Semi-supervised Machine Learning

Semi supervised learning technique uses unlabeled data for training, usually mixing a
small amount of labeled data with a large set of unlabeled data. This learning approach

11

falls between supervised learning (trained with labeled data) and unsupervised learning
(trained with un-labeled data).

2.6.4 Reinforcement Machine Learning

Reinforcement learning is a type of machine learning, hence it’s a branch of artificial
intelligence. In an interactive fashion, reinforcement technique continuously learns from
the environment. In this way, the system learns from its experiences of the environment
until it explores the full range of possible states.

2.7 Machine Learning Tools for Classification

We have used supervised machine learning techniques in this experiment. Our employed
machine learning classifiers can be divided as deep learning based ML classifiers and
regular ML classifiers.

2.7.1 Regular Machine Learning Classifiers

Regular machine learning techniques use algorithms to process data, learn from it, hence
make decisions based on what has been learned. We experimented with regular machine
learning classifiers e.g. LR, LDA, SVM, K-Neighbors, DT and GaussianNB.

2.7.1.1 Logistic Regression (LR)

Logistic Regression [26] is known as direct probability model in statistics, developed by
statistician D. R. Cox in 1958. It’s a predictive analysis like all regression analyses. A
binary response can be determined using binary logistic model based on one or more
predictor data features. This ability makes LR a probabilistic classification model in the
field of machine learning.

In optimization problem, binary-class L2 penalized LR minimizes cost function repre-
sented in eq-2.1.

min
w,c

1

2
wTw + C

n∑
i=1

log(exp(−yi(XT
i w + c) + 1) (2.1)

12

2.7.1.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis(LDA) is also known as Normal Discriminant Analysis or
Discriminant Function Analysis. For supervised classification problems, LDA is com-
monly used to reduce dimensionality. It is employed for modeling differences in groups
like separating two or more classes. To project the features in higher dimension space
into a lower dimension space, LDA is mostly used technique.

Equation for LDA can be derived using simple probabilistic models. Here for each class
k, conditional data distribution is P (X|y = k). Using Bayes formula, we can obtain the
prediction:

P (y = k|X) =
P (X|y = k)P (y = k)

P (X)
=

P (X|y = k)P (y = k)∑
l P (X|y = l) · P (y = l)

(2.2)

and we choose the class k which maximizes conditional probability. P (X|y) is modeled
as a multivariate Gaussian distribution for linear and quadratic discriminant analysis
with density:

P (X|y = k) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(X − µk)

tΣ−1
k (X − µk)

)
(2.3)

where number of features is d.

If we want to use this model as classifier, from the training data we need to estimate -
class priors P (y = k), class means µk and the co-variance matrices.

For LDA, Gaussians for each class are considered to share same co-variance matrix :
Σk = Σ, for all k. It leads us to linear decision surfaces, which can be determined by
comparing log-probability ratios log[P (y = k|X)/P (y = l|X)]:

log
(
P (y = k|X)

P (y = l|X)

)
= log

(
P (X|y = k)P (y = k)

P (X|y = l)P (y = l)

)
= 0⇔

(µk − µl)
tΣ−1X =

1

2
(µt

kΣ
−1µk − µt

lΣ
−1µl)− log P (y = k)

P (y = l)

(2.4)

2.7.1.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) [27] is a supervised learning technique which can be ap-
plied to any classification or regression task. SVM is an extension to nonlinear model of
the generalized portrait algorithm developed by Vladimir Vapnik. SVM algorithm oper-
ates based on the statistical learning approach and the Vapnik Chervonenkis dimension
developed by Vladimir Vapnik and Alexey Chervonenkis.

13

A hyper-plane or set of hyper-planes is constructed by SVM in a higher dimension space,
which can be applied in classification problems. Using hyper-plane a good separation
can be achieved which has the largest distance to the nearest training data points of
any class, since in general the larger the margin the lower the generalization error of the
classifier. Let’s consider training vectors xi ∈ Rp, i = 1,, n, in 2 classes and a vector
y ∈ 1,−1n, SVM solves the mathematical eq-2.5

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (2.5)

Here yi(w
Tϕ(xi) + b) ≥ 1 − ζi and ζi ≥ 0, i = 1,, n. Its dual equation is represented

by eq- 2.6.

min
α

1

2
αTQα− eTα (2.6)

Here yTα = 0 and 0 ≤ αi ≤ C, i = 1, ..., n, where e represents the vector of all ones,
C > 0 is the upper bound, Q is n by n positive semi-definite matrix Qij ≡ K(xi, xj) =

ϕ(xi)
Tϕ(xj) is the kernel. Using function ϕ, training vectors are implicitly mapped into

a higher dimensional space. To make decision, eq-2.7 is used.

sgn(
n∑

i=1

yiαiK(xi, x) + ρ) (2.7)

2.7.1.4 K-Nearest Neighbors

K-Nearest Neighbors(KNN) is one of the most basic yet essential classification algorithm
in the field of machine learning. It follows supervised learning technique. It has been
applied mostly in data mining fields, pattern recognition, intrusion detection. In real-
life scenarios it is widely disposable since it is non-parametric, that means about the
distribution of data, it does not make any underlying assumptions.

KNN calculates the distance between data points. For this, simple Euclidean Distance
formula can be used:

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2 (2.8)

2.7.1.5 Decision Tree (DT)

Decision Tree is known as non-parametric supervised learning technique, mostly used
in data classification and regression. Its target is to build a model which can assume a

14

target variable’s value by learning simple decision rules obtained from the data features.
The deeper the decision tree goes, more complex decision rules generate and the model
becomes more fitter.

Provided training vectors xi ∈ Rn, i=1,2,....,l and a label vector y (where y ∈ Rl), a
decision tree recursively partitions the space in a way that data information with same
labels are grouped together.

Let’s consider data at node m is represented by Q. For each candidate split θ = (j, tm)

consisting of a feature j and threshold tm, partition the data into Qleft(θ) and Qright(θ)

subsets

Qleft(θ) = (x, y)|xj <= tm

Qright(θ) = Q \Qleft(θ)
(2.9)

Using an impurity function H() we can determine the impurity at m, the selection
depends on the task being performed (either classification or regression)

G(Q, θ) =
nleft

Nm
H(Qleft(θ)) +

nright

Nm
H(Qright(θ)) (2.10)

To minimise impurity

θ∗ = argminθ G(Q, θ) (2.11)

Recurse for subsets Qleft(θ
∗) and Qright(θ

∗) until the maximum allowable depth is
reached, Nm < minsamples or Nm = 1.

2.7.1.6 Gaussian Naive Bayes (GaussianNB)

Gaussian Naive Bayes (GaussianNB), is a special branch of Naive Bayes, mostly used
for features having continuous value. It’s considered that all the features have normal
distribution.

The following mathematical relation comes from Bayes’ theorem, where class variable y

and dependent feature vector x1 through xn, :

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
(2.12)

Using the naive conditional independence assumption

15

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (2.13)

this relationship is simplified for all i as

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(2.14)

Since P (x1, . . . , xn) is constant given the input, following classification rule can be used:

P (y | x1, . . . , xn) ∝ P (y)

n∏
i=1

P (xi | y)

⇓

ŷ = arg max
y

P (y)

n∏
i=1

P (xi | y),

(2.15)

The likelihood of the features in GaussianNB is assumed to be Gaussian:

P (xi | y) =
1√
2πσ2

y

exp
(
−(xi − µy)

2

2σ2
y

)
(2.16)

Maximum likelihood is used to estimate σy and µy parameters.

2.7.2 Deep Learning Classifiers

Deep learning is a most popular part of machine learning in artificial intelligence based
on neural network. It is also known as deep neural network or deep structured learning.
We experimented with deep learning based classifier e.g. LSTM, BLSTM & SM.

2.7.2.1 Long Short-term Memory (LSTM)

Long short-term memory networks [28] mostly called “LSTMs”, are special kind of re-
current neural network (RNN) architecture. It can remember values over arbitrary
intervals. LSTM is designed to avoid the long-term dependency problem of RNN. It
addresses vanishing/exploding gradient problem to allow learning of long-term depen-
dencies. Figure -2.5 represents LSTM cell [4] design.

16

Figure 2.5: LSTM block containing input, output and forget gates [4]

2.7.2.2 Bidirectional Long Short-term Memory (BLSTM)

An extension of traditional LSTM is called Bidirectional LSTM which can significantly
improve model performance in sequence classification problems. In the input sequence,
BLSTM trains two LSTM instead of one. First recurrent layer is duplicated in the
network to create two layers side-by-side. After that it provides the input sequence as-is
as input to the first layer and a reversed copy of the input sequence is provided to the
second layer. This action serves additional context to the network and result outcome
in faster and even fuller learning on the problem. Bidirectional networks are faster and
more effective in any sequence classification problem than unidirectional ones. Figure
-2.6 shows BLSTM classifier design [5].

Figure 2.6: BLSTM classifier design [5]

2.7.2.3 Sequential Model (SM)

Deep learning based Python library Keras [29] focuses on the creation of models as a
sequence of layers. Sequential class contains very simple model which is actually a linear
stack of Layers. Using Sequential class constructor we can easily define all of the layers
it requires, hence the model is ready to use. Sequential model requires prior knowledge

17

about its input shape. For this purpose, in the first layer of a Sequential model, its
input shape information is served. Using compile method, learning process is configured
before training a model. Input data and labels are represented using Numpy arrays to
train Keras models. Usually fit function is used to train a model.

2.8 Performance Evaluation

To evaluate overall performance of our employed machine learning classifiers, we’ve used
k-fold cross validation with evaluation scores like accuracy, f1-score, precision and recall.
For multi-class classification, we’ve applied macro average method to calculate precision,
recall and f1-score. Accuracy is most used when all the classes are equally important.
On the other hand, F1-score gives a better measure of the incorrectly classified cases
than the accuracy metric. We need the precision and recall to calculate the F1-score.
Using confusion matrix, average performance of the model can be determined.

2.8.1 Confusion Matrix

Confusion matrix (CM) [30] represents information of actual and predicted classifications
done by a classifier. Generally performance of any ML classifier is measured using the
numeric information presented in confusion matrix. Confusion matrix for a two class
classifier is represented in Table-2.1.

Table 2.1: Confusion Matrix for Binary Class Classifier

Predicted
Negative Positive

Actual
Negative tn fp
Positive fn tp

The entities of confusion matrix represented in Table-2.1 have the following meaning:

• tn represents accurate predictions for negative entity

• fp represents wrong predictions for positive entity

• fn represents wrong predictions for negative entity

• tp represents accurate predictions for positive entity

18

2.8.2 Precision

Precision (P) [31] is ratio of correctly identified positive cases. It can be calculated using
the eq-2.17.

P =
tp

tp+ fp
(2.17)

2.8.3 Recall

Recall (R) [31] is the ratio of positive observations that were correctly identified. It can
be represented using the eq-2.18

R =
tp

tp+ fn
(2.18)

2.8.4 F1-Score

F1-Score (F1) which is also known as balanced F-score or traditional F-measure [31], is
harmonic mean of precision and recall. We can calculate it using eq-2.19.

F1 = 2
P ∗R
P +R

(2.19)

For F1 score :

• best_score = 1

• worst_score = 0

2.8.5 Accuracy

Accuracy (A) is the ratio of correctly identified observation to the total observations
hence it’s the most intuitive performance measure matrix. Accuracy calculation is shown
in eq-2.20

A =
tp+ tn

tp+ tn+ fp+ fn
(2.20)

19

2.8.6 Macro Average for Precision, Recall and F1-score

This method provides average values for independently calculated precision and recall
for each class. Then f1-score is determined using harmonic mean of macro averaged
precision and recall scores. Macro average is suitable when we have balanced data-set
in each class.

Let’s consider for class A, B and C, we’ve corresponding precision values Pa , Pb , Pc

and recall values Ra, Rb, Rc.

We can calculate macro average precision (P) using eq-2.21.

P =
Pa + Pb + Pc

3
(2.21)

eq-2.22 represents calculation for macro average recall (R).

R =
Ra +Rb +Rc

3
(2.22)

2.8.7 k-Fold Cross Validation

Cross validation [32] is a well know approach to evaluate performance of a ML classifier
model. It is also known as re-sampling procedure for a model containing limited data.
In this approach, a portion of data is kept aside which won’t be used while training,
later that data sample will be used for testing the ML classifier.

k-Fold cross validation procedure has one parameter called k, which represents total
number of groups that a given data-set is to be split into. We can use a specific value
for the parameter k and then use this number in place of k to refer the cross validation.
The working procedure of k-fold cross validation is, it takes a group from k split and
hold it as test data-set. Remaining (k-1) groups are used as training data-set. After
completing the training step, evaluation score is retrained for the ML classifier using
the test data-set. This procedure continues by shifting test data-set group. Finally the
performance of the ML classifier is evaluated based on the evaluation scores from each
step.

We can observe k-fold procedure with an example. Let’s consider a data-set of 6 obser-
vations and we’ll split it into 3 groups. That means k=3, and we can refer it to 3-fold
cross validation.

Data-set = [1, 2, 3, 4, 5, 6]

Splitting this data-set into 3 groups:

20

Group1 = [1, 3]

Group2 = [4, 5]

Group3 = [6, 2]

Using 3-fold cross validation, we’ll have 3 data-sets to train and test any ML classifier.

Model1: Train data-set Group1 + Group2, Test data-set Group3

Model2: Train data-set Group2 + Group3, Test data-set Group1

Model3: Train data-set Group3 + Group1, Test data-set Group2

The evaluation scores (accuracy, f1, precision, recall) for ML classifier can be retained for
each model and then we can use those scores to analyze that ML classifier performance
on the given data-set.

2.9 Summary

We begin this chapter with a discussion of related works accomplished previously for sen-
timent analysis. Both Bengali and non-Bengali works were elaborately discussed. Then
we explained different level of sentiment analysis, importance of well structured corpus
for ML applications, preparing data model to work with ML classifiers. After that we
focused on different types of machine learning and our employed machine learning clas-
sifiers. Last of all we finished this chapter with explaining cross validation, performance
matrix and their importance to evaluate machine learning classifiers.

21

Chapter 3

Proposed Method

We are going to present our proposed architecture for this research work in this chapter.
It covers the data collection planning, data filtering based on our need, data labeling to
model generation, training and testing approaches for selected ML classifiers.

3.1 Overview of proposed system

As we aimed to work with sentiment analysis, we had to narrow our research interest
in this field to be more specific about what we like to do. We were interested to work
for Bengali sentiment analysis. For that purpose initially we looked for related works
accomplished in this sector in past few years and then planned for our own work. For
sentiment classification, we finalized to use supervised machine learning technique which
requires labeled data. Machine learning techniques in classification problem require a
good collection of data set. The data set is required to train and test the performance
of ML classifiers. So our first challenge was to look for a data source which will provide
Bengali textual data. Considering all those needs, Facebook was a good candidate for our
primary data source. In the Figure-3.1 we presented an overview diagram of our research
work. Our proposed approach can be divided into sub parts - data collection, filtering,
labeling, data model generation, train ML classifiers, test and evaluate performance of
ML classifiers.

3.2 Corpus Creation

Our corpus creation planning can be divided into three steps - data collection, data
filtering and data labeling. These three steps are described below -

22

Figure 3.1: Proposed architecture of our research work

3.2.1 Data Collection

Our primary data source was Facebook from where we have collected textual data with
user reaction counts. It has been done using Facebook graph API implemented by
python script. A set of neutral Bengali sentence list is collected manually for further
experiment.

3.2.2 Data Filtering

Data filtering process is required to reduce noise from data and also to filter anything
on demand. We reduced noise from our collected data set by filtering hyperlinks, special
characters, checking duplicate data. As we aimed to work for Bengali sentiment analysis,
we filtered any characters except Bengali phonetics.

3.2.3 Data Labeling

For sentiment classification we’ve considered positive, negative and neutral polarity.
Each of the documents in our data set contains user reaction counts. We have developed
an algorithm-1 to prepare labeled data (positive and negative) using the reaction counts.
We also checked if a document is polarized or not using this algorithm-2. Thus we have
constructed our labeled corpus.

23

3.3 Data Model Selection

To work with ML classifiers, we needed to select a word embedding system which repre-
sents textual data as numeric vectors. We explored latest word embedding technologies
and found word2vec, sentence2vec and doc2vec quite useful and interesting. We’ve pre-
pared doc2vec and TF-IDF averaged document vector model using word2vec from our
textual data-set to work with further steps.

3.4 Choosing Machine Learning Classifiers

We have selected Python based deep learning library Keras [29] to implement it’s own
Sequential Model (SM) API. Then we enhanced our experiment by adding LSTM cell
and Bidirectional LSTM layer with SM. BLSTM was chosen to implement for it’s well-
known performance in sequence classification problem.

Among other traditional ML classifiers, we chose to train and test the performance of
LR, LDA, SVM, K-Neighbors, DT and GaussianNB. These traditional classifiers have
been implemented using Python based machine learning library scikit-learn [33].

3.5 Result and Performance Evaluation

To evaluate each ML classifiers performance, we chose to use k-fold cross validation with
performance evaluation scores - accuracy and F1 score. Using only accuracy matrix
wont provide any good result for imbalanced number of data in each classes. But our
final data-set contains equal number of documents for positive, negative and neutral
sentiments. So using accuracy matrix along with F1 score provided much better insight
for result and performance analysis in our experiment.

3.6 Summary

We have discussed about our research planning and presented it step by step. Also a
diagram presenting the total work flow is shown in Figure-3.1. This chapter represents
different approaches used in each steps of this research work to achieve the best outcome.

24

Chapter 4

Experimental Analysis

4.1 Experiments

In this chapter, we have discussed about our experimental setup. Section-4.1.1 describes
about our corpus collection, filtering process and data-set labeling. Section-4.1.2 repre-
sents how we constructed TF-IDF averaged word2vec and doc2vec models from labeled
data-set and finally Section-4.1.3 describes about the parameters we have used to train
and test our model for different machine learning algorithms.

4.1.1 Corpus Construction

Aim of this study is to analyze public sentiment on any topic from Bengali text and
then categorize it based on sentiment polarity. We have considered positive, negative
and neutral sentiment in this work. To construct a corpus for Bengali sentiment analysis,
different sources have been considered, among which Facebook post data seems most
promising for SA as they represent the most natural form of language. In Facebook
posts, people react with different reactions i.e. “Like”, “Love”, “Wow”, “Sad”, “Angry”,
and “Haha”, each of which represent different states of emotion. Our aim is to classify
these emotions into positive, negative or neutral class. Users react with “Like” more
than other reactions as it is easy to perform although it does not represent a specific
sentiment polarity that can be classified as positive or negative [34]. Correlation among
“Like” and other reactions can be expressed as-

• Strongly positive correlation with “Love” and “Wow”.

• Weakly positive correlation with “Sad” and “Angry”.

Although “Like” reaction is the most common, we have considered this as low-effort data
from users and ignored it while classifying the sentiment polarity of a post. Furthermore,

25

we have observed that people reacted “Haha” reaction in any funny, sarcastic posts more
than any other reactions. Therefore, we can’t polarize post sentiment in either positive
or negative category based on “Haha” reaction.

We have used Facebook Graph API [35] implemented by our own Python script
to collect data regularly from some popular Bengali Facebook public pages. We have
collected 6244 Facebook posts which were pre-processed afterwards to validate them
as proper text data. The pre-processing stage includes the filtering of any kind of
hyperlink, special characters, duplicate post and non Bengali phonetics. This filtering
shrunk the volume of our data set to 4317 posts. We stored this data into database
which contains following columns - page type, page post text, and reaction counts of -
“like”, “love”, “wow”, “sad”, “angry” and “haha”. Fig. 4.1 demonstrates the total flow
of data collection and corpus preparation from Facebook posts.

Figure 4.1: Flow of data collection and corpus preparation from Facebook post.

26

To prepare positive and negative post documents from this database we had to categorize
multiple reactions into either positive or negative. Here, “Love” and “Wow” reactions
represent positive polarity and on the other hand “Sad” and “Angry” reactions repre-
sent negative polarity. We considered total count of “Love” and “Wow” reactions as
summation of total positive reactions, and total count of “Sad” and “Angry” reactions
as summation of total negative reactions. Comparing the total numbers of positive and
negative reactions of a post, we categorized it accordingly. This process is summarized
in Algorithm 1. Here, we have not categorize a post’s sentiment if-

• the total number of “Haha” reaction is greater than positive or negative reactions.

• the total number of positive and negative reactions are same or both are zero.

The procedure to determine whether a post is categorized or not is shown in Algorithm
2. After this procedure we have 3,193 posts where majority reaction counts are -

• Love: 1,162

• Wow: 529

• Sad: 1,007

• Angry: 495.

So, finally we have 1,691 posts with positive polarity and 1,502 posts with negative
polarity. To keep equal polarity data, we finally stored 1,500 posts per sentiment polarity
(positive and negative).

We’ve manually constructed a set of neutral documents containing 3500 Bengali sen-
tences. Socian Ltd. [36] provided a public corpus containing 4,000 labeled Bengali
sentences according their sentiment polarity, either positive or negative which contains
equal distribution of labeled data. They have collected this corpus from different social
media platforms, news paper sites and blogs. We included this data set with our pre-
pared corpus. This way finally we managed to prepare a corpus of 10500 posts, 3500
documents for each sentiment polarity - positive, negative and neutral.

4.1.2 Model Generation

In this section we’ll describe about the procedure we used to generate numeric vector
models from out textual data-set. For this purpose we’ve chosen to work with TF-IDF
averaged word2vec and doc2vec models.

27

Algorithm 1 Preparing Positive/Negative Documents from Facebook Page Posts
1: procedure ParsePosts(posts)
2: for each post do
3: positive← count(Love) + count(Wow)
4: negative← count(Sad) + count(Angry)
5: if Categorizable() = false then
6: skip to the next post
7: else if positive > negative then
8: save post text into positive.txt
9: else

10: save post text into negative.txt
11: end if
12: end for
13: end procedure

Algorithm 2 Checking a post is either categorizable or not
1: procedure Categorizable()
2: if count(Haha) > positive or negative then
3: return false
4: else if positive = negative then
5: return false
6: else if positive = negative = 0 then
7: return false
8: else
9: return true

10: end if
11: end procedure

4.1.2.1 TF-IDF Averaged Word2vec Model

Word2vec model represents numeric vector for the words in a document. Here each
word is represented as a vector where similar words have closer values to it. First we
constructed gensim word2vec [23] model using our prepared corpus.

Parameters used to train gensim word2vec model-

• size : 100 ; word vectors dimensionality

• window : 25 ; max distance between focus and predicted word in sentence

• min_count : 1 ; word frequency to ignore below this

• workers : 20 ; worker threads used for training

• alpha : 0.03 ; initial learning rate

• min_alpha : 0.02 ; min learning rate over training progress

• training iteration : 60

28

After training the word2vec model, it contains a vocabulary of 23574 unique words. We
used min_count 1 to keep all the words in vocabulary. We had to find a way to get
document vector from word vectors. Following approaches are consider for this purpose-

• Word2vec vectors average: It’s a simple approach to take the average of all
word vectors from a document to represent document vector.

• Word2vec vectors average using TF-IDF: This is the best approach to find
document vector from word vectors. Firstly word vectors are multiplied with their
corresponding TF-IDF scores and then the average vector represents document
vector.

We chose to work with TF-IDF approach, hence mentioning the outcome document
vector model as TF-IDF averaged word2vec model. TF-IDF means “Term Frequency -
Inverse Data Frequency”. Here TF provides the frequency of a word in each document
in a data-set. It can be represented by the ratio of a word appearance in a document
with the total number of words in that document. IDF is used to calculate the weight
of rare words across all documents in a corpus. Lets consider a term t from a document
d in a document set. Then the formula to find TF-IDF score for that term -

TFIDF (t, d) = TF (t, d) ∗ IDF (t) (4.1)

where the IDF is calculated as -

IDF (t) = log[
n

DF (t)
] + 1 (4.2)

Here n is the number of documents in data-set. DF(t) is the document frequency of t,
the document frequency is the number of documents in the document set that contain
the term t. The effect of adding “1” to the IDF in the equation above is that terms with
zero IDF, i.e., terms that occur in all documents in a training set, will not be entirely
ignored.

We chose to implement TD-IDF averaged document vector from word vectors. If we
consider a document D and n number of word vectors from that document as W1, W2,
...., Wn , then the document vector Dvec using TD-IDF averaged -

Dvec =
W1 ∗ TFIDF (W1, D) +W2 ∗ TFIDF (W2, D) + ...+Wn ∗ TFIDF (Wn,D)]

n
(4.3)

Some example sentences from our data-set are presented with their corresponding TF-
IDF averaged document vector using word2vec model.

29

• Positive Bengali Sentence:

িƯেভর উŝাবন ÝযুিĜ খােত এেনেছ দাǃণ পিরবত� ন

Corresponding TF-IDF averaged document vector (100 dimension) -

[0.12677471 0.19230783 0.49904703 -0.28776385 0.31691263 0.02206575]

• Negative Bengali Sentence:

সবাই এখন মুখুশ ধারী আসেল ƿকও মানবতার জনÇ কাজ কের না

Corresponding TF-IDF averaged document vector (100 dimension) -

[0.01814755 0.11038729 -0.71053634 -0.4587077 -0.05324249 1.46053586]

• Neutral Bengali Sentence:

আিম কেলজ ƿথেক Ƴাতক পাশ করার পের বািড়েত িফের যাই এবং িতন বছরআমার
িপতামাতার সেİ বসবাস কির

Corresponding TF-IDF averaged document vector (100 dimension) -

[0.47712728 1.72919988 0.46817737 0.01164649 0.28329555 -0.46544328]

4.1.2.2 Doc2vec Model

Creating numerical representation of any document is the goal of doc2vec [25]. Here each
document or sentence is represented as a vector where similar documents have closer
values. We’ve used our corpus to train doc2vec model. All the labeled sentences from our
corpus were fed into doc2vec model to build its vocabulary. Here each labeled sentence
contains a list of Bengali words and a label either “Positive”, “Negative” or “Neutral”
based on its sentiment polarity. An example of labeled sentences used to train doc2vec
is -

[[’word1’, ’word2’, ’word3’,..., ’last word’], [’label’]]

For each document we’ve used the polarity label with a unique identifier while training
the doc2vec model, so that later we can observe any document’s numeric vector repre-
sentation. For unique identifier, we used document index. So a positive labeled sentence
representation looks like -

[[’word1’, ’word2’, ’word3’,..., ’last word’], [’POS_unique_index’]]

A negative labeled sentence representation -

30

[[’word1’, ’word2’, ’word3’,..., ’last word’], [’NEG_unique_index’]]

And a neutral labeled sentence representation -

[[’word1’, ’word2’, ’word3’,..., ’last word’], [’NEU_unique_index’]]

Parameters used to train gensim doc2vec model-

• vector_size : 100 ; feature vector dimension

• dbow_words : 1 ; to train word vectors

• dm : 0 ; training algorithm PV-DBOW

• epochs : 60 ; training epochs over data-set

• window : 25 ; max distance between focus and predicted word in document

• min_count : 2 ; word frequency to ignore below this

• workers : 20 ; worker threads used for training

• alpha : 0.03 ; initial learning rate

• min_alpha : 0.02 ; min learning rate over training progress

After training the doc2vec model, it contains 10500 documents vector and has a vocab-
ulary of 10170 unique words. Using min_count 2 eliminates unimportant words while
training the model. Below we are representing some example sentences from our data-set
and their corresponding document vector from doc2vec.

• Positive Bengali Sentence:

িতিন ƿলখক িহেসেব পুেরা ƿদেশ িবখÇাত হেয় ওেঠন

Corresponding document vector (100 dimension) -

[0.13282606 -0.19305475 0.3983899 -0.09714048 -0.32621175 -0.2620505]

• Negative Bengali Sentence:

ƿরািহİা সমসÇা বাংলােদেশর িনরাপŐার জনÇ ভয়াবহ ǆমিক

Corresponding document vector (100 dimension) -

[-0.4323732 0.54408896 0.46205854 -0.7783456 0.6751657 -1.1729606]

• Neutral Bengali Sentence:

আপিন িক িনিƝত ƿয আপিন আপনার চাকির ƿছেড় িদেত চান

Corresponding document vector (100 dimension) -

[0.12949668 -0.12175082 -0.27730727 -0.5717205 0.4326126 -0.91951835]

31

4.1.3 Classifier Design

For sentiment classification using our prepared numeric vector models, we used machine
learning approaches i.e. LR, SVM, DT, K-Neighbors, LDA, GaussianNB, SM, LSTM
and BLSTM. Keras [29] API has been applied to train and test SM and LSTM, BLSTM
deep learning classifiers. Using scikit-learn [33] API, other classifiers - LR, LDA, SVM,
K-Neighbors, DT and GaussianNB were implemented. Chosen parameters for each
classifier are described below:

• LSTM classifier:

– Input: Input constructed with three different layers -

∗ First Layer: LSTM cell including 64 hidden nodes and activation ‘‘relu”.
∗ Middle Layer: Dropout rate 0.25.
∗ Final Layer: 3D Dense layer with activation function ‘‘softmax” and

kernel_initializer=‘‘glorot_uniform”.

– Compilation: optimizer=‘‘adam”, loss=‘‘categorical_crossentropy” and
matrices= [‘‘accuracy”]

• BLSTM classifier:

– Input: Three different layers used to construct input -

∗ First Layer: Bidirection layer including LSTM cell with 64 hidden nodes
and activation ‘‘relu”.

∗ Middle Layer: Dropout rate 0.25.
∗ Final Layer: 3D Dense layer with activation function ‘‘softmax” and

kernel_initializer=‘‘glorot_uniform”.

– Compilation: optimizer=‘‘adam”, loss=‘‘categorical_crossentropy” and
matrices= [‘‘accuracy”]

• SM classifier:

– Input: Input contained three different layers -

∗ First Layer: Dense layer with batch_size=64, input_dim=100 and acti-
vation ‘‘relu”.

∗ Middle Layer: Dropout rate 0.25.
∗ Final Layer: 3D Dense layer with activation function ‘‘sigmoid”.

– Compilation: optimizer=‘‘rmsprop”, loss=‘‘categorical_crossentropy” and
matrices= [‘‘accuracy”]

• LR classifier:

– penalty=‘‘l2′′

32

– Tolerance for stopping criteria, tol=0.0001

– Max iteration, max_iter=100

– Inverse of regularization strength, C=1.0

• LDA classifier:

– Solver, solver=‘‘svd”; Singular value decomposition (svd) is mostly recom-
mended for any data-set having large number of features.

– Rank estimation threshold in SVD solver, tol=0.0001

– Shrinkage parameter, shrinkage=None

• SVM classifier:

– Penalty parameter, C=1.0

– Tolerance for stopping criterion, tol=0.0001

– Kernel type, kernel=‘‘rbf”

– Size of the kernel cache (in MB) cache_size=200

– Max iteration, max_iter=1000

• K-Neighbors classifier:

– Number of neighbors, n_neighbors=5

– Weight function for prediction, weights=‘‘uniform”

– Algorithm for computing NN, algorithm=‘‘auto”; Most appropriate algo-
rithm is determined by auto function based on the parameters value passed
into fit method.

– Distance metric used for the tree, metric=‘‘minkowski”

– Minkowski metric power parameter, p=2; p=2 is completely equivalent to
using euclidean_distance.

• DT classifier:

– Split quality measuring function, criterion=‘‘gini′′; supported Gini impurity
criteria.

– Strategic parameter used to select split at each node, splitter=‘‘best′′

– random_state=None

• GaussianNB classifier:

– Prior probability of selective classes, priors=None

– var_smoothing=1e − 09 ; For calculation stability, part of largest variance
from all features is added to variances.

33

4.1.4 Summary

In this section, we explained about different components of our experimental setup. We
discussed about choosing social media Facebook as our primary data source to con-
struct the corpus. Numeric document vector model generation using TF-IDF averaged
word2vec and doc2vec is discussed. Parameter choosing for our employed machine learn-
ing classifiers are also focused in this chapter.

4.2 Result and Analysis

To evaluate the effectiveness of our employed ML classifiers, we’ve applied k-fold cross
validation technique and retained performance evaluation scores - accuracy, F1 score,
precision and recall from each cross validation steps. For train and test ML classifiers,
we’ve used document vectors gained from doc2vec and TF-IDF averaged document vec-
tors from word2vec. To refer the computational efficiency of classification, we will use
the term performance in this work.

4.2.1 k-Fold Cross Validation

We have applied 10-fold cross validation to justify the performance of selected ML clas-
sifiers using our prepared vector models from doc2vec and word2vec. Both of our vector
models contain 10500 document vectors representing the full data-set. Below steps we’ve
followed for applying k-fold cross validation to the ML classifiers for both vector models.

• We’ve initialized document vectors into python numpy [37] array and named it
data array. This array size is 10500 and each item in this array contains 100
dimension vector shape. Corresponding labels for each vectors are loaded into
another numpy array named label array.

• We’ve used same shuffled index for both data and label array using numpy random
permutation [38] so that they are randomly distributed over the data-set.

• Using sklearn cross validation score API [39], we provided the ML classifier, data
and label array, k-fold as 10, and defined the performance evaluation scoring pa-
rameter which we want to retain. Then this API provides expected evaluation
scores for 10-fold cross validation and we stored it for our result analysis.

Using the above steps we retained performance evaluation scores for our employed ML
classifiers. In following sub sections, we represent 10-fold cross validation results achieved
for word2vec and doc2vec models. All the results are calculated in percentage.

34

4.2.1.1 10-Fold Cross Validation - TF-IDF Averaged Word2vec

Table-4.1 represents 10-fold accuracy scores with a mean column for TF-IDF averaged
document vectors using word2vec model.

Table 4.1: 10-fold accuracy scores for TF-IDF averaged document vectors (Word2vec)

Classifier K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean
BLSTM 77.81 78.76 76.95 76.95 73.71 79.43 78.19 76.57 76.48 78.57 77.34
LSTM 76.29 78.48 76.38 74.38 73.14 77.24 78.95 77.71 76.19 78.38 76.71
SM 75.9 78.95 74.1 72.38 73.81 76.29 77.62 75.33 75.33 76.67 75.64
SVM 74.19 75.43 70.76 71.81 72.29 72.67 76.38 73.24 71.71 72.48 73.1
LR 71.62 73.24 71.9 69.24 70.19 71.43 73.33 72.29 70.95 73.33 71.75
LDA 71.05 73.14 72.57 69.33 69.71 71.33 72.67 72.48 70.76 73.62 71.67
K-Neighbors 68.38 69.24 67.52 68.1 67.52 70.29 70.67 67.71 67.9 68.95 68.63
GaussianNB 58.38 62.19 64.95 59.24 61.62 63.33 63.33 62.1 60.1 60.57 61.58
DT 59.52 57.52 60.1 56 55.43 58.57 60.48 56.95 57.62 56.76 57.9

Table-4.2 represents all performance evaluation parameter’s (accuracy, F1 score, preci-
sion, recall) 10-fold mean values for TF-IDF averaged document vectors using word2vec
model. From this table we can observe that BLSTM has acquired highest accuracy
of 77.34%. On other hand K-Neighbors, GaussianNB and DT have provided lowest
accuracy below than 70%.

Table 4.2: 10-fold mean performance scores for TF-IDF averaged document vectors
(Word2vec)

Classifier Accuracy F-1 Score Precision Recall
BLSTM 77.34 77.19 77.05 77.02
LSTM 76.71 76.19 77 76.51
SM 75.64 74.93 75.14 74.85
SVM 73.1 72.99 74.13 73.1
LR 71.75 71.79 71.93 71.75
LDA 71.67 71.8 72.19 71.67
K-Neighbors 68.63 68.48 69.09 68.63
GaussianNB 61.58 61.42 64.07 61.58
DT 57.9 57.76 57.42 57.51

4.2.1.2 10-Fold Cross Validation - Doc2vec

Table-4.3 represents 10-fold accuracy scores with a mean column for doc2vec document
vectors.

35

Table 4.3: 10-fold accuracy scores for doc2vec document vectors

Classifier K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean
BLSTM 74.57 77.05 73.71 74 76.67 74.38 74.29 77.05 78.19 75.71 75.56
LSTM 73.14 75.9 74.48 74.76 75.43 73.62 74.57 76.48 77.14 74.19 74.97
SM 73.14 75.24 74.38 72 73.9 71.14 72.38 74.76 76.1 72.48 73.55
SVM 72.38 72.48 72.1 71.52 71.81 72.29 71.24 73.9 75.43 73.52 72.67
LDA 70.38 71.05 71.14 70.48 73.05 69.9 70 72.1 71.52 70 70.96
LR 70.1 70.67 70.95 70.57 72.86 69.33 69.71 73.05 71.62 69.71 70.86
GaussianNB 64.57 64.1 66.19 65.05 65.9 66.1 65.33 66.57 66.29 63.9 65.4
K-Neighbors 58.29 57.62 58.19 58.57 58.57 58.67 57.62 59.9 58.76 57.9 58.41
DT 53.62 49.71 51.43 49.24 50 48.38 51.33 51.52 52.76 52.19 51.02

Table-4.4 represents all performance evaluation parameter’s (accuracy, F1 score, pre-
cision, recall) 10-fold mean values for doc2vec document vectors. Here BLSTM has
acquired highest accuracy of 75.56% and DT obtained lowest accuracy of 51.02%.

Table 4.4: 10-fold mean performance scores for doc2vec document vectors

Classifier Accuracy F-1 Score Precision Recall
BLSTM 75.56 75.77 75.42 75.74
LSTM 74.97 74.66 74.61 75.19
SM 73.55 73.61 73.58 73.7
SVM 72.67 72.44 72.76 72.67
LDA 70.96 70.77 70.79 70.96
LR 70.86 70.7 70.7 70.86
GaussianNB 65.4 64.9 65.5 65.4
K-Neighbors 58.41 56.19 64.59 58.41
DT 51.02 51.05 50.8 50.9

4.2.2 Doc2vec vs TF-IDF Averaged Word2vec

Document vectorization technique of doc2vec is an adaptation of word2vec. At first
doc2vec creates vocabulary by extracting unique words from the provided documents
data-set, therefor words are unique across all documents. For generating vector model,
doc2vec offers two approaches - PV-DM and PV-DBOW. We’ve built our doc2vec model
using PV-DBOW. In training phase, it doesn’t consider word ordering information in
a document. Also term frequency of a word is ignored in training phase. In simple it
determines context probability for a given paragraph or document by sampling list of
words from it. So we can see that term ordering and rareness of a term are not considered
while creating document vector using doc2vec. It leads to a problem, common words will
appear more often and other words containing more information about the document

36

will be less frequent, and thus the output document vector will be less informative for
topic classification.

Now we’ll discuss how TF-IDF vectorization overcomes these drawbacks. TF-IDF con-
siders the term frequency of a word and makes a balance with its inverse document
frequency. That means mostly common words across all documents will gain low scores.
Rare words representing the topic of a document will gain higher scores and they will
have more impact on the output document vector.

According to this research [40], performance of doc2vec is not remarkable for short length
documents. doc2vec model is more suitable for very large corpus. On the contrary, TF-
IDF is preferable for short text fragment and small or medium size corpus. As our corpus
size is small and it contains mostly short length documents, TF-IDF seems the most
suitable solution. Our result comparison also indicates that TF-IDF averaged word2vec
provides more classification accuracy than doc2vec.

Table-4.5 represents a comparison of 10-fold mean accuracy scores achieved from TF-IDF
averaged document vectors using word2vec and document vectors from doc2vec.

From this table our observation is, almost all ML classifiers performed slightly better
with TF-IDF averaged document vectors than doc2vec document vectors. K-Neighbors
and DT perform much better with TF-IDF averaged word2vec. Only GaussianNB has
achieved better result with doc2vec model.

Table 4.5: Comparison of 10-fold mean accuracy scores gained for TF-IDF averaged
word2vec and doc2vec models

Classifier Word2vec Accuracy Doc2vec Accuracy
BLSTM 77.34 75.56
LSTM 76.71 74.97
SM 75.64 73.55
SVM 73.1 72.67
LR 71.75 70.86
LDA 71.67 70.96
K-Neighbors 68.63 58.41
GaussianNB 61.58 65.4
DT 57.9 51.02

4.2.3 Discussion

In our study, we have applied 10-fold cross validation with most common machine learn-
ing performance matrices i.e. accuracy, precision, recall, F1 score for the evaluation of
engaged ML classifiers. Obtained 10-fold mean performance scores for word2vec is rep-
resented in TABLE 4.2 and doc2vec is represented in TABLE 4.4. Results are sorted

37

decreasingly based on the classification accuracy achieved by the employed classifiers.
According to the data available in TABLE 4.2 for TF-IDF averaged document vectors
using word2vec, BLSTM has the best performance as it has gained an accuracy of 77.34%
whilst DT has attained lowest accuracy which is 57.9% for the corpus we have built in
this study. And in TABLE 4.4 for doc2vec document vectors, BLSTM has achieved
highest accuracy of 75.56% whilst DT performs very poor with an accuracy of 51.02%.
Classifiers result accuracy comparison for TF-IDF averaged word2vec and doc2vec is rep-
resented in TABLE 4.5. This table shows that almost all ML classifiers perform slightly
better with document vectors constructed using TF-IDF score from word2vec model.
Only GaussianNB has achieved better result with doc2vec document vectors comparing
its result with TF-IDF averaged word2vec.

The word2vec algorithm makes distributed semantic representation of words. This idea
can be extended for sentences and documents. Instead of learning feature representations
for words, system can learn it for sentences or documents. sentence2vec represents
mathematical average of all the word vector representations in a sentence. doc2vec

extends the idea of sentence2vec or rather word2vec because sentences can also be
considered as documents. For our experiment we required document vectors as our
corpus contains documents as a single unit of labeled data and we aimed to classify it.
doc2vec model gives document vector for each documents we provided while training
the model. word2vec model only provides word vectors from a document. To make
document vector using word2vec model, we applied TF-IDF averaged document vector
which is mostly used in document classification and data analysis problems using word
embedding technologies.

We observed that performance of deep learning approaches are better than regular ML
classifiers using document vectors obtained from both word2vec and doc2vec model.
BLSTM, LSTM and SM classifier are deep learning based approaches we used in this
experiment. BLSTM used Sequential model with bidirectional LSTM cell which in-
creases performance of classifier. In sequence classification problem, using the input
sequence in first layer and a reverse copy in the second layer provide more context to
the classifier network. This improves the learning process and provides faster result.

Among other traditional machine learning approaches, SVM, LR and LDA performs
better than K-Neighbors, DT and GaussianNB using both doc2vec and word2vec model.
Naive Bayes (NB) classifier works fine with numerical and textual data. But it has a
major limitation. When features are highly correlated, it performs very poorly. It also
fails to consider word occurrence frequency in feature vector regarding text classification
problem. In our experiment GaussianNB has achieved accuracy of 61.58% with TF-IDF
averaged document vector using word2vec. But it has achieved good result using doc2vec
which is 65.4%. Nearest Neighbor classifier is known as effective and non-parametric in
nature. But it takes very long time for classification. SVM offers an advantage which
is, in over fitting problem, it tends to be fairly robust and can scale up to considerable

38

dimensionality. SVM achieved good result among other traditional ML classifier using
both doc2vec and word2vec model. With TD-IDF averaged document vector, SVM
achieved 73.1% accuracy which is pretty good.

Using a suitable pre-processing, K-Neighbors can achieve very good results. Its perfor-
mance scales up well with the number of data set, which is not the case for SVM. SVM
uses more parameters than LR and DT classifiers as per analysis. It can achieve highest
classification precision most of the time. But SVM is very time consuming as it uses
more parameters which requires more computation time. LDA is popular for multi-class
classification, because it provides low-dimensional views of the data. It should be ap-
plied when training sample is small, to avoid high variance problem. Compared to SVM
and LDA, LR is computationally efficient.

Deep learning classifiers performance is better that traditional machine learning when
the scale of data increases. But with a small data-set, deep learning algorithms don’t
perform very well. The reason is deep learning approaches need a large amount of data
to learn from it in context of classification. High-end machines are suitable for deep
learning experiment contrary to traditional machine learning approaches.

4.2.4 Summary

In this section we’ve shown our experimental result analysis using 10-fold cross vali-
dation. Performance evaluation parameters - accuracy, F1-score, precision and recall
have been retained from each k-fold validation step and displayed in tabular manner for
relevant vector models. Comparison of doc2vec and TF-IDF averaged word2vec model is
discussed. We also analyzed different ML classifiers performance with document vectors
obtained from TF-IDF averaged word2vec and doc2vec models.

39

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Word embedding technologies perform better with large data-set in context of natural
language processing. One of the main focus of this research was to identify relevant data
source and retrieve categorical data from it which can be applied to supervised machine
learning and document embedding problems. Social media platforms are great source
of data if we can apply proper filtering and extract valuable information from it. In our
experiment, classification accuracy for different classifiers shows that word embedding
technologies have enough potential if implemented properly.

5.2 Limitations

Classifying human sentiment has many limitations. First we want to discuss some lim-
itations that depend on mainly human interactions and their believe, which also varies
with time and place.

• Person’s perspective: As we are taking about opinions, it is the nature of human
to have different perspective about anything. It’s difficult to mine and categorize
large amount of data sample when attempting to analyze opinion or sentiment
from it.

• Time and Place: An opinion may have different meaning and sentiment based
on time and place. A demand of one country’s people may not have any positive
impact on other countries.

• Group and Organizational Impact: Religion and politics also have impact on
human sentiment. Based on peoples believe/group/organization, their sentiment
on a topic can vary.

40

Other limitations are related to data collection, filtering and system design.

• Data Source Availability: Availability of Bengali corpus for sentiment analysis
is not that high. For this study we did not found any standard classified Bengali
text corpus. That’s why we have to create our own corpus.

• Noisy Data: We have created our own corpus by parsing social media content
and that contains lots of noisy data. We removed those noisy data sometimes
manually and sometimes pragmatically based on predefined filtering rules.

• Bengali Phonetics based Filtering: In this experiment we only worked with
texts containing Bengali phonetics, which filtered out Romanized Bengali texts.
But people often use Romanized text to write their thoughts.

5.3 Future Work

Although our corpus currently constructed with the polarity of sentiment, it is a definite
possibility that multi-class model can be prepared given enough time and larger volumes
of data.

• Identify Different Human Emotions: A textual data can represent very spe-
cific state of emotions like - happiness, sadness, fear, anger, surprise etc. In future,
we can work with these multiple class classification instead of just identifying sen-
timent polarity.

• Scoring Multiple Emotions: Representing a document with percentage of emo-
tions can be an excellent improvement.

• Romanized Bengali Texts Classification: We pre-processed dataset to get
the text containing only Bengali phonetics which filtered out Romanized Bengali
texts. This narrowed down our dataset and also the scope to work with Latin
letters used to write Bengali sentences (Romanized Bengali text).

• Work with Emoticons: Filtering special characters removed any kind of emoti-
cons used in the textual post, but emoticon plays a vital role in sentiment expres-
sion. We are intending to work with emoticons in our next research work involving
sentiment analysis.

41

Bibliography

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[2] Andrew M Dai, Christopher Olah, and Quoc V Le. Document embedding with
paragraph vectors. arXiv preprint arXiv:1507.07998, 2015.

[3] A gentle introduction to Doc2Vec. https://medium.com/wisio/
a-gentle-introduction-to-doc2vec-db3e8c0cce5e, 2020. (Visited on
02/03/2020).

[4] Wikipedia - LSTM. https://en.wikipedia.org/wiki/Long_short-term_
memory, 2018. (Visited on 10/27/2018).

[5] Deep Dive into Bidirectional LSTM. https://www.i2tutorials.com/
technology/deep-dive-into-bidirectional-lstm/, 2020. (Visited on
02/03/2020).

[6] Erik Cambria. Affective computing and sentiment analysis. IEEE Intelligent Sys-
tems, 31(2):102–107, 2016.

[7] Rui Gaspar, Cláudia Pedro, Panos Panagiotopoulos, and Beate Seibt. Beyond
positive or negative: Qualitative sentiment analysis of social media reactions to
unexpected stressful events. Computers in Human Behavior, 56:179–191, 2016.

[8] Social Media Statistics & Facts. https://www.statista.com/topics/1164/
social-networks/, 2018. (Visited on 10/27/2018).

[9] Social Media Stats Bangladesh. http://gs.statcounter.com/
social-media-stats/all/bangladesh, 2018. (Visited on 10/27/2018).

[10] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends
Inf. Retr., 2(1-2):1–135, 2008.

[11] Sentiment analysis. https://en.wikipedia.org/wiki/Sentiment_analysis,
2018. (Visited on 10/27/2018).

[12] Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. In International Conference on Machine Learning, pages 1188–1196, 2014.

42

https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/
https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/
https://www.statista.com/topics/1164/social-networks/
https://www.statista.com/topics/1164/social-networks/
http://gs.statcounter.com/social-media-stats/all/bangladesh
http://gs.statcounter.com/social-media-stats/all/bangladesh
https://en.wikipedia.org/wiki/Sentiment_analysis

[13] Peter D. Turney. Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, pages 417–424, 2002. ISSN
0738467X.

[14] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the Peanut Gallery:
Opinion Extraction and Semantic Classification of Product Reviews. In Proceedings
of the 12th international conference on World Wide Web (WWW ’03), pages 519–
528, 2003.

[15] Bo Pang, Lillian Lee, Z. A. Bán, Bo Pang, Lillian Lee, and Shivakumar
Vaithyanathan. Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing. Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 48(1):49–55, 2002.

[16] T. Wilson, J. Wiebe, and P. Hoffman. Recognizing contextual polarity in phrase
level sentiment analysis. In Proceedings of the conference on human language tech-
nology and empirical methods in natural language processing, pages 347–354, 2005.

[17] Amandeep Kaur and Vishal Gupta. A Survey on Sentiment Analysis and Opinion
Mining Techniques. Journal of Emerging Technologies in Web Intelligence, 5(4):
367–371, 2013.

[18] Xi Ouyang, Pan Zhou, Cheng Hua Li, and Lijun Liu. Sentiment analysis using
convolutional neural network. In 2015 IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting, pages 2359–2364, 2015.

[19] Shaika Chowdhury and Wasifa Chowdhury. Performing sentiment analysis in
Bangla microblog posts. In 2014 International Conference on Informatics, Elec-
tronics and Vision, ICIEV 2014, 2014.

[20] Amitava Das and Sivaji Bandyopadhyay. Opinion-polarity identification in bengali.
In International Conference on Computer Processing of Oriental Languages, pages
169–182, 2010.

[21] Md Al-Amin, Md Saiful Islam, and Shapan Das Uzzal. Sentiment analysis of Bengali
comments with Word2Vec and sentiment information of words. In ECCE 2017 -
International Conference on Electrical, Computer and Communication Engineering,
pages 186–190, 2017.

[22] Asif Hassan, Mohammad Rashedul Amin, Abul Kalam Al Azad, and Nabeel Mo-
hammed. Sentiment analysis on bangla and romanized bangla text using deep
recurrent models. In IWCI 2016 - 2016 International Workshop on Computational
Intelligence, pages 51–56, 2017.

43

[23] Word2Vec. https://code.google.com/archive/p/word2vec/, 2018. (Visited on
10/27/2018).

[24] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning
of sentence embeddings using compositional n-gram features. arXiv preprint
arXiv:1703.02507, 2017.

[25] Doc2vec paragraph embeddings. https://radimrehurek.com/gensim/models/
doc2vec.html, 2018. (Visited on 10/27/2018).

[26] Alexander Genkin, David D Lewis, and David Madigan. Large-scale bayesian lo-
gistic regression for text categorization. Technometrics, 49(3):291–304, 2007.

[27] Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. In European conference on machine learning, pages
137–142. Springer, 1998.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[29] Keras: The Python Deep Learning library. https://keras.io, 2018. (Visited on
10/27/2018).

[30] Foster Provost and Ron Kohavi. On applied research in machine learning. In
Machine learning, pages 127–132, 1998.

[31] David Martin Ward Powers. Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation. International Journal of Machine
Learning Technology, 2(1):37–63, 2011.

[32] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[33] Scikit-learn - Machine Learning in Python. https://scikit-learn.org, 2018.
(Visited on 10/27/2018).

[34] Facebook Reactions. http://minimaxir.com/2016/06/
interactive-reactions/, 2018. (Visited on 10/27/2018).

[35] Facebook Graph API. https://developers.facebook.com/docs/graph-api/,
2018. (Visited on 10/27/2018).

[36] Socian Bangla Sentiment Dataset. https://github.com/socianltd/
socian-bangla-sentiment-dataset-labeled/, 2018. (Visited on 10/27/2018).

[37] NumPy. https://numpy.org/, 2020. (Visited on 02/03/2020).

[38] Numpy Random Permutation. https://numpy.org/devdocs/reference/random/
generated/numpy.random.permutation.html, 2020. (Visited on 02/03/2020).

44

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html
https://keras.io
https://scikit-learn.org
http://minimaxir.com/2016/06/interactive-reactions/
http://minimaxir.com/2016/06/interactive-reactions/
https://developers.facebook.com/docs/graph-api/
https://github.com/socianltd/socian-bangla-sentiment-dataset-labeled/
https://github.com/socianltd/socian-bangla-sentiment-dataset-labeled/
https://numpy.org/
https://numpy.org/devdocs/reference/random/generated/numpy.random.permutation.html
https://numpy.org/devdocs/reference/random/generated/numpy.random.permutation.html

[39] Sklearn Cross Validation Score. https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.cross_val_score.html, 2020. (Visited
on 02/03/2020).

[40] Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, and Bart
Dhoedt. Learning semantic similarity for very short texts. In 2015 ieee international
conference on data mining workshop (icdmw), pages 1229–1234. IEEE, 2015.

45

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

Appendix A

My Publications

1. Hoque, M. T., Rifat-Ut-Tauwab, M., Kabir, M. F., Sarker, F., Huda, M. N., and
Abdullah-Al-Mamun, K. (2016, May). Automated Bangla sign language transla-
tion system: Prospects, limitations and applications. In 2016 5th International
Conference on Informatics, Electronics and Vision (ICIEV) (pp. 856-862). IEEE.

2. Hoque, M. T., Islam, A., Ahmed, E., Mamun, K. A., and Huda, M. N. (2019,
February). Analyzing Performance of Different Machine Learning Approaches
With Doc2vec for Classifying Sentiment of Bengali Natural Language. In 2019 In-
ternational Conference on Electrical, Computer and Communication Engineering
(ECCE) (pp. 1-5). IEEE.

46

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Aim and Objectives
	1.3 Contribution
	1.4 Organization of the Thesis

	2 Background Materials
	2.1 Literature Review
	2.1.1 Non-Bengali Languages
	2.1.2 Bengali Language

	2.2 Natural Language Processing
	2.3 Sentiment Analysis
	2.3.1 Different Levels of Sentiment Analysis
	2.3.1.1 Document level
	2.3.1.2 Sentence level
	2.3.1.3 Entity level

	2.4 Corpus Construction
	2.4.1 Scripting
	2.4.2 Prepossessing
	2.4.3 Data Set Labeling

	2.5 Data Model Construction
	2.5.1 Word Embedding Techniques
	2.5.1.1 Word2Vec
	2.5.1.2 Sentence2Vec
	2.5.1.3 Doc2Vec

	2.6 Types of Machine Learning Algorithms
	2.6.1 Supervised Machine Learning
	2.6.2 Unsupervised Machine Learning
	2.6.3 Semi-supervised Machine Learning
	2.6.4 Reinforcement Machine Learning

	2.7 Machine Learning Tools for Classification
	2.7.1 Regular Machine Learning Classifiers
	2.7.1.1 Logistic Regression (LR)
	2.7.1.2 Linear Discriminant Analysis (LDA)
	2.7.1.3 Support Vector Machine (SVM)
	2.7.1.4 K-Nearest Neighbors
	2.7.1.5 Decision Tree (DT)
	2.7.1.6 Gaussian Naive Bayes (GaussianNB)

	2.7.2 Deep Learning Classifiers
	2.7.2.1 Long Short-term Memory (LSTM)
	2.7.2.2 Bidirectional Long Short-term Memory (BLSTM)
	2.7.2.3 Sequential Model (SM)

	2.8 Performance Evaluation
	2.8.1 Confusion Matrix
	2.8.2 Precision
	2.8.3 Recall
	2.8.4 F1-Score
	2.8.5 Accuracy
	2.8.6 Macro Average for Precision, Recall and F1-score
	2.8.7 k-Fold Cross Validation

	2.9 Summary

	3 Proposed Method
	3.1 Overview of proposed system
	3.2 Corpus Creation
	3.2.1 Data Collection
	3.2.2 Data Filtering
	3.2.3 Data Labeling

	3.3 Data Model Selection
	3.4 Choosing Machine Learning Classifiers
	3.5 Result and Performance Evaluation
	3.6 Summary

	4 Experimental Analysis
	4.1 Experiments
	4.1.1 Corpus Construction
	4.1.2 Model Generation
	4.1.2.1 TF-IDF Averaged Word2vec Model
	4.1.2.2 Doc2vec Model

	4.1.3 Classifier Design
	4.1.4 Summary

	4.2 Result and Analysis
	4.2.1 k-Fold Cross Validation
	4.2.1.1 10-Fold Cross Validation - TF-IDF Averaged Word2vec
	4.2.1.2 10-Fold Cross Validation - Doc2vec

	4.2.2 Doc2vec vs TF-IDF Averaged Word2vec
	4.2.3 Discussion
	4.2.4 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Limitations
	5.3 Future Work

	A My Publications

