

Implementation of WebRTC (Web based Real Time

Communication) solution for On Premise Video Conferencing

System

Khondakar Mohammad Rakibul Hasan

Student ID: 012183010

A Project

in

The Department

of

Computer Science and Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science in Computer Science and Engineering

United International University

Dhaka, Bangladesh

January 2021

© Khondakar Mohammad Rakibul Hasan, 2021

 i

Approval Certificate

This project titled "Implementation of on-premise WebRTC solution for video

conferencing system” submitted by Khondakar Mohammad Rakibul Hasan, Student

ID: 012183010, has been accepted as Satisfactory in fulfillment of the requirement for the

degree of Master of Science in Computer Science and Engineering on 25 Jan 2021.

Board of Examiners

1.

______________________________ Supervisor

Prof Dr. Mohammad Nurul Huda

Professor and Director, MSCSE

Department of Computer Science and Engineering (CSE)

United International University (UIU)

Dhaka-1212, Bangladesh

2.

______________________________ Examiner

Mohammad Mamun Elahi

Assistant Professor

Department of Computer Science and Engineering (CSE)

United International University (UIU)

Dhaka-1212, Bangladesh

3.

______________________________ Ex-Officio

Prof Dr. Mohammad Nurul Huda

Professor and Director, MSCSE

Department of Computer Science and Engineering (CSE)

United International University (UIU)

Dhaka-1212, Bangladesh

 ii

Declaration

This is to certify that the work entitled "Implementation of on-premise WebRTC

solution for video conferencing” is the outcome of the research carried out by me under

the supervision of Professor Dr. Mohammad Nurul Huda.

__

Khondakar Mohammad Rakibul Hasan

Student ID: 012183010

MSCSE Program

Department of Computer Science and Engineering (CSE)

United International University (UIU)

Dhaka-1212, Bangladesh

In my capacity as supervisor of the candidate’s project, I certify that the above statements

are true to the best of my knowledge.

__

Prof Dr. Mohammad Nurul Huda

Professor and Director, MSCSE

Department of Computer Science and Engineering (CSE)

United International University (UIU)

Dhaka-1212, Bangladesh

 iii

Abstract

The Covid-19 pandemics has given the world a new perspective of being on the work place

remotely from home. Remote collaboration and distant learning have reached up to a

different dimension that may change the industry practices permanently in days to come.

On premise WebRTC solutions can be a cost saving and more secured way of doing this in

coming days. My project intends to deploy an on premise WebRTC solution for United

International University with relevant requirements, architecture and methodology.

To talk about the WebRTC Technology itself; full meaning of WebRTC is “Web Based

Real Time Communication”. WebRTC is comparatively a newer technology which enables

standard web browser to launch or host video teleconferencing systems. The exciting part

is that, this is open source and the Software Development Kit (SDK) or the Application

Programming Interface (API) are easily available in official WebRTC website or in the

popular open-source repositories like GitHub, Bitbucket or Source forge etc.

WebRTC has got enormous potentiality in terms of expansion, research and customization.

Because of its availability in the open-source market, the technology and its plugins and

addons are easily available in the internet. WebRTC has been developed as the core

technology, hence it has got full flexibility to expand or customize with considerable

amount of research and analysis. WebRTC is a community driven technology where the

contributions are coming from developers, implementors and users. Therefore, it has a

growing tendency of releasing newer version very often. In addition to that, due to the

availability of the core technology at free of cost, many organizations are customizing the

white labeled version and developing their own branded video conferencing product out of

this technology. My endeavor in this project work is quite a bit similar to build a new app

named as “UIU Connect” by using the core and associated technology of WebRTC.

Despite having enormous possibilities, WebRTC implementation has got few challenges

as well. First of all, due to its open-source availability WebRTC has got many stable and

unstable versions in the internet. Finding the right version remains as challenge. Again, the

plugins and addons are community developed, therefore while choosing them we have to

be very careful about the security aspects of it. Last but not the least, the versions are

updated and released in almost every month. So, working with such fast evolving

technology sometimes get challenging for individual developers.

 iv

Acknowledgement

I would like to express my special thanks of gratitude to my Project Supervisor Professor

Dr. Mohammad Nurul Huda, Director (MSCSE) for guiding me through this project work.

Despite of his busy schedule, he has given me lot of time to complete my project work

successfully.

Besides, I must thank Assistant Professor Mohammad Mamun Elahi sir as my Examiner

who had been extremely passionate and co-operative while I presented my project proposal

to him. He guided me and explained the key areas I must cover to make this project

successful.

I also must thank the Department of Computer Science and Engineering and CITS for

giving me this unique opportunity to do this project on WebRTC, which also helped me to

be engaged in lot of R&D and I could gather so much knowledge on this new technology.

I am really thankful to them.

Lastly, I would also like to thank my family members and colleagues who assisted me

relentlessly in finalizing this project work within the limited time frame.

 v

Table of Contents

LIST OF FIGURES ………………………………………………………………. vi

LIST OF IMAGES ……………………………………………………………….. vii

1. Introduction

 1.1 Introduction ……………………………………………………………. 01

 1.2 Background ……………………………………………………………. 01

 1.3 Organization of the Report ………………………………………………. 02

2. Motivation …………………………………………………………………… 03

 2.1 Problem Statement ……………………………………………………. 03

 2.2 Purpose of the Project ……………………………………………………. 03

3. Technology …………………………………………………………………….. 05

 3.1 Hierarchical Components …………………………………………………. 05

 3.2 API Components ………………………….………………………………. 06

 3.3 Architecture …………………………………….……………………….. 07

4. Methodology …………………………………………...………………………. 08

 4.1 Introducing Jitsi Meet ……………………………….…….……………… 08

 4.2 Projects of Jitsi Meet ……………………………………..……………….. 09

5. Deployment and Integration …………………………………………………. 11

 5.1 Prerequisite Environment …………………………………………………. 11

 5.2 Deployment and Hosting ………………………………………………….. 11

 5.3 Deploying Peripheral Services ..…………………………………………... 15

 5.4 Testing and Verifications ..………………………………………………... 17

6. Implications and Security ………………………………………………… . 22

 6.1 Use Case Scenarios ………………………………………………………. 22

 6.2 Advantages ……………………………………………………………….. 23

 6.3 Security Features …………………………………………………………. 23

7. Conclusion ……………………………………………………………………. 25

 7.1 Concluding Remarks ……………………………………………………... 25

 7.2 Limitations ……………………………………………………………….. 25

 7.3 Future Works …………………………………………………………….. 26

References ………………………………………………………………………… 27

 vi

List of Figures

Figure 1: Hierarchical Components of standard WebRTC System ………… 05

Figure 2: API Components and Different Engines of WebRTC ….………... 06

Figure 3: Screenshot from Official Website of Jitsi ………………………... 08

Figure 4: Official Components of Jitsi Project ……………………………... 10

Figure 5: Chart of required port and services………………………….……. 13

Figure 6: Single Jitsi, Multiple Video bridge Architecture …………………. 15

 vii

List of Images

Image 1: Landing Page of UIU Connect …………………………………... 17

Image 2: Log In Page of UIU Connect ……………………………………. 17

Image 3: System Admin Panel ………………………………….…………. 18

Image 4: Host Name and Password Entry………………………....……….. 18

Image 5: Staring a Meeting ………………………………………………… 19

Image 6: Start a Chat …………………….…………………….……..…….. 19

Image 7: Sharing Screen during meeting………………………………...… 20

Image 8: Sharing Meeting Link with Users………………………………… 20

Image 9: Setting up Security Options ……………………………….……… 21

Image 10: Control Features ……………………………………….………… 21

 1

Chapter 1

Introduction

1.1 Introduction

WebRTC (Web based Real-Time Communications) is a latest technology, which

brings audio /video communication and data transfer capabilities to web

applications running on standard browsers and mobile device platforms. WebRTC

is a standard for embedding both way interactive communications capabilities like

voice, video, chat directly from a browser. WebRTC is based on peer-to-peer

connection sessions between web sockets available in commonly used browsers and

applications APIs. Instead of relying on third-party plug-ins or proprietary software

like Zoom, Google Meet or Skype, any organization can implement an on premise;

cost free WebRTC Solution to meet their purpose of Video Conferencing and

remote collaboration.

WebRTC empowers web-based programs with continuous communications traffic

like voice, video and screen/file share through JavaScript APIs. In a traditional

Client-Server architecture, data transmission is carried out between the browser and

the server. The browser sends a request to the server, and then the server respond

corresponding data according to the request parameters. On the other hand,

WebRTC achieves peer-to-peer real-time data transmission between browsers

where the role of server remains only to ensure session control and signaling.

1.2 Background

GIPS Corp (Global IP solutions Corp) which is a USA based R&D company have

extensively experimented on real-time voice and video processing in Peer-to-peer

network since 1999. Google, in May 2010 bought GIPS and took over the RTC

Project along with the codecs and experimented modules for further developments.

1 year later, in May 2011 Google collaborated with IETF (Internet Engineering

Task Force) and W3C (World Wide Web Consortium) and released an Open-

Source project named as WebRTC. Since then, WebRTC has been deliberately

experimented and supported by Apple, Google, Microsoft, Mozilla, and Opera.

 2

Presently, all ongoing work on WebRTC is being standardized through the W3C

and IETF.

1.3 Organization of the Report

The content included in this Project Report are organized into 6 Chapters. After this

introductory chapter the subsequent chapters covers the topic in a chronological

order.

Chapter 2 describes the motivation to choose this project including problem

statement and the purpose itself. Few inherited benefits and justification of

choosing this technology has been also described in the second part of the chapter.

Chapter 3 summarizes the core technology of WebRTC where the basic

components and architecture are described with their purpose and technical

implications.

Chapter 4 introduces the solution which is known as Jitsi Project. Jitsi is the most

popular and commonly used platform of WebRTC globally. In this chapter the core

components and the methodology of implantation are described.

Chapter 5 basically explain and demonstrate the main implementation part of this

project work. Here the step-by-step techniques and procedures including

prerequisite environments and CLI commands are showed and explained. The

chapter also narrates the deployment and hosting aspects of the core framework and

other peripheral services into the Server.

Finally, Chapter 6 describes the use case scenario and advantages of implantation

of WebRTC technology specific to an educational institute like UIU. Last but not

the least, this chapter also bring some assurance about the technology by describing

the security features and technologies involved to prevent cyber security threats and

vulnerabilities.

 3

Chapter 2

Motivation

2.1 Problem Statement

During Covid-19 Pandemic situation most of the organization had to adopt some of

the Video Conferencing systems for better collaboration within their employee and

stakeholders. Commercial Video Conferencing systems are good to have; but have

few draw backs such as:

2.1.1 Commercial Video Conferencing Solutions like Zoom, Google Meet or

Skype for Business are expensive. Sometime those are not cost effective in

regards to the overall outcome or contribution from the organization’s

perspective.

2.1.2 Those solutions are mostly Cloud Based where the main data stream is

handled by the vendor including the encryption and authentication,

therefore secrecy and privacy are not always confirmed in regards to Data

Security perspective.

2.1.3 Due to business concerns, the solution providers usually do not allow the

user to access the core architecture to do much of customization or R&D.

Rather, users are only allowed to avail the Software as a Service (SaaS).

2.1.4 White labeling such as Own Logo, Branding or End user supports are not

possible due to restricted usage policy from the service Provider.

2.2 Purpose of the Project

My Project work intends to implement an “Open Source WebRTC Solution” for

United International University which will facilitate the University to own an on-

premise Video Conferencing Solution with the facilities as described below:

 4

2.2.1 On Premise The solution will be deployed in UIU Datacenter and the

Core System will be handed over to the UIU Team for future research and

development.

2.2.2 Free of Cost For the project work, I intend to deploy a popular Open-

Source solution which will involve “zero costing” provided the solution is

deployed in UIU Data Center and necessary real IP Host, Domain names

and SSL certificates are provided from the university.

2.2.3 Secured and reliable The WebRTC solution will be deployed with

following security feature:

• SSL Encryption Secured Socket Layer (SSL) Encryption used for

Server-Client Communication.

• E2E Encryption End to End Encryption (E2EE) for Peer-to-Peer

communication.

2.2.4 Full Featured The solution will be as good as any commercial video

conferencing system with features like:

• Video and Audio Conferencing with HD quality streaming over low

bandwidth connectivity.

• Dynamic Invitation link for each meeting room with password

protection of the meeting as needed.

• Guest access control by Lobby / Waiting room feature.

• Both way Screen Sharing and presentation mode.

• Live broadcasting over HTTPS from YouTube.

• Activity control on participants by the host like Force Quit, Force

Mute etc.

2.2.5 White Labeled the solution will be customized with UIU Logo, Frontend

Design and UIU Domain name for proprietary use.

2.2.6 Scalable All source codes and privileged access to the core system will be

handed over to UIU IT Team. Further development and resources expansion will

be possible at any point of time.

 5

Chapter 3

Technology

3.1 Hierarchical Components

WebRTC is not based on single server, rather collection of servers, API and

protocols standardized by W3C and IETF. These APIs defines interaction between

different intermediaries of the system. The peers or users are connected through a

media stream at the transport layer over the internet. Beneath, the WebSocket API

of peer’s browsers connect with the Web Server through the signaling process. This

API indicates the nature and attributes of requests that can be made, how to make,

with which type of data formats and the conventions to follow, etc. It also

provisions the extension mechanisms which ensure the extended functionality of

different components of the system. The webserver is connected at the backend

with the Conferencing manager server and XMPP Server. Extensible Messaging

and Presence Protocol in short XMPP, is a combination of technologies for voice

and video calls, instant messaging, collaboration, content syndication, and

generalized routing of XML data. Lastly, the Selective Forwarding Unit (SFU)

server streams the appropriate contents over secured channel which enables the

media stream between peers over internet traffic securely. Fig

Figure 1: Hierarchical Components overview of WebRTC

Figure 1: Hierarchical Components of standard WebRTC System

 6

3.2 API Components As said earlier, API components of WebRTC are

interdependent and mutually support each other to perform different function of the overall

functions. Often these APIs are deployed in single server and are well connected through a

wide range of IP Address and port forwarding options (Figure 2). However, in larger

infrastructure the components may also be deployed independently in different physical or

virtual servers as well.

3.2.1 Media Stream API This API controls the synchronized streams of media

with a set of input and output devices. The input source might be a physical device,

such as the camera or microphone. Media Stream API ensures the user’s browser

get access permission to the camera and microphone. A real-time media stream is

represented by a stream object in the form of video or audio with an added security

level through user permissions. Each time the API start fetching a stream seeks user

permission to include additional layer of privacy.

3.2.2 RTC Peer Connection API Real time communication through audio or

video calls are set up through this API. This API directly communicate with the

web browsers on user’s computers. This component provides a framework to make

real-time communications of Audio, Video and the transport mechanism.

3.2.3 RTC Data Channel API Through this API, real time data transmission is

ensured by the browsers to establish data channel between nodes with the

mechanism of peer-to-peer connections. It represents a bi-directional data channel

between two peers which enables exchange of arbitrary data between them. Each

RTC Data Channel can be configured to provide reliable or unreliable delivery of

messages and in-order or out-of-order delivery of messages.

Media Stream API

Peer Connection API

Data Channel API

Figure 2: API Components and Different Engines of WebRTC

 7

3.3 Architecture

WebRTC architecture is designed basing on different protocols and standard, which

cover most commonly used API / SDK used on web-based applications and

browsers at present. Access to the system hardware to capture both voice and video

is a prerequisite for the technology. As raw voice and video streams are not

compatible to transfer over networks, they need to be processed for noise reduction

and echo cancellation. Additionally, those are automatically encoded with

optimized narrowband or wideband audio codecs and equipped with necessary

error-concealment algorithm as required. These techniques collectively merge the

bad effects of network jitter and packet loss that ensures better quality. Therefore,

the architecture of WebRTC is quite complex one. Different Codec used in

WebRTC are described below:

3.2.1 Audio Codecs Most common audio codecs used in WebRTC are iSAC and

iLBC. iSAC is a wideband audio codec for streaming audio that uses a

sampling rate of 16-32 KHz with 12-52 kbps bitrate. On the other hand,

iLBS is a narrowband speech codec that has got a bit rate of 13.33-15.2 kbs

variable bitrate. Another new codec named as Opus has further bitrate as

lower as 6kbps.

3.2.2 Video Codecs Mostly used video codec in WebRTC is V8 which requires

100–2K Kbit/s of bandwidth. The bitrate depends on the user defined

quality of the streams such as Low, SD, HD etc. This codec is quite popular

for web-based video streaming due to low latency.

3.2.3 Real-Time Network Transport WebRTC is a browser-based

communication that use Transmission Control Protocol (TCP). For data

transmission, WebRTC uses User Datagram Protocol (UDP), which is the

basic requirement for all types of real-time communication in the browser.

Browser are needed to be compatible with wide ranges of protocols and

services and are capable of traversing multiple layers of NATs and firewalls.

 8

Chapter 4

Methodology

4.1 Introducing Jitsi Meet

WebRTC has got number of open-source frameworks, which can be easily

implemented, on premise. However, there are number of commercial solutions

based on WebRTC popularly known are - Zoom, Cisco WebEx, MS Teams, Google

Meet, Rocket, Apache open meetings etc. However, among the free open-source

solutions most commonly used framework is Jitsi.

4.1.1 Overview on Jitsi Open Source WebRTC

Jitsi is a collection of community based free and open-source multiplatform

solutions with the wide range of services like VTC, VoIP, File Sharing and

instant messaging (Figure 3). Jitsi is available for all OS platforms such as

Windows, Linux, macOS, iOS and Android. At the beginning, Jitsi project

started with the Jitsi Desktop which was also familiarized as SIP

Communicator. With the expansion of scope and public demand, the

developer community shifted their focus on the Jitsi Videobridge enabling

web-based multi-party video calling. Further, the team added Jitsi Meet,

which is a full video conferencing system.

Figure 3: Screenshot from the Official Webpage of Jitsi

 9

Presently the platform of Jitsi is built on an open-source community-based

development model. Thousands of contributors around the world

continuously develop and integrate different projects of Jitsi at free of cost.

Jitsi allows user to easily build and deploy secure video conferencing

solutions on premise servers with prescribed guidelines and manuals. The

community initiatives are centrally published and updated through the

official website: https://jitsi.org/

4.2 Projects of Jitsi

Commonly known as the “birthplace” for Jitsi, GitHub currently contains 103

repositories for various Jitsi projects. Among all, Jitsi Meet is the heart of the Jitsi

family, which is an open-source JavaScript WebRTC application that allows

building and deploying scalable video conferencing systems. Few other important

and essential projects of Jitsi are described below:

4. 2.1 Jitsi Meet This is the Debian/Ubuntu based Video conferencing

server designed for quick installation as the core solution. This is a

WebRTC compatible JavaScript application that utilize SFU service

named Jitsi Videobridge to enable high-definition video conferences

with scalable features.

4.2.2 Jitsi Video Bridge This component performs the task of

Selective Forwarding Unit engine for powering multi-party

conferences. JVB is responsible for routing video streams within end

users. This is highly scalable and modular based solution, which can

be instantly deployed or withdrawn basing on the traffic load.

4.2.3 Jitsi Conference Focus (JICOFO) JICOFO manages the ongoing

media sessions between each of the peers (Host and Guests) along

with the server-side video bridge component.

4.2.4 Jitsi Gateway to SIP (JIGASI) JIGASI is a server-side

application that ensures the SIP clients are connected with the meet.

If no SIP is provisioned, this is an optional feature.

 10

4.2.5 Jitsi Broadcasting Infrastructure (JIBRI) JIBRI is a set

of tools for streaming a conference that works by launching rendered

virtual frame buffer and capturing and encoding the output with FF-

Mpeg codecs. This part of the solution record, convert and stream

audio and video.

4.2.6 Prosody This is the XMPP (Extensible Messaging and Presence

Protocol) communication server which ensures the set up and configuration

of all other system resources. This is easily configurable and scalable

solutions for developers which can be rapidly developed and integrated with

latest communication protocols. Under the permissive MIT/X11 license

authorities, Prosody is an open-source, community developed solution

which is used as core platform of many other solutions (Figure 4).

 Figure 4: Official Components of Jitsi Project

 11

Chapter 5

Deployment and Integration

5.1 Prerequisite Environment

Jitsi is an easy to install platform requires moderate technical expertise. All open-

source resources make it easier and cost-free solutions to deploy in any small or

large enterprise environment. Basic prerequisite of deploying Jitsi are:

a. Ubuntu 18.04 server with Root privileges

b. A domain or sub-domain

c. Real IP with Firewall

d. SSL Certificates Webserver like Nginx

5.2 Deployment and Hosting

5.2.1 Server Set-up Jitsi has got different versions which can be deployed in

multi-platform environments like Debian, Unix, Docker etc. However, most

popular and widely accepted deployment option for Jitsi-Meet installation is on a

Debian-based GNU/Linux system. Among other supported distributions, following

are the most recent versions that is available in open sources:

a. Ubuntu 18.04 (Bionic Beaver) or later

b. Debian 10 (Buster) or later

Initial preparation of the server required to update two of the packages and

repository:

a. gnupg2

b. sudo (only needed if we use sudo command.)

First, we need to make sure that the system is updated and all prerequisite

packages are installed in the system. To do so:

a. Run the following update command as ‘root’ or ‘sudo’ to retrieve

the latest package versions for all available repositories: apt update

b. Then, to ensure that the support for apt repositories served over an

HTTPS traffic, the command is typed as: apt install apt-transport-

https

 12

c. For Ubuntu based systems, Jitsi need some additional dependent

packages from universal package repository. Following command is

executed to do so:

sudo apt-add-repository universe

sudo apt update

5.2.2 Setting up a Custom DNS

The domain name is chosen at the beginning. For Example, connect.uiu.ac.bd. This

domain will be pointed to the web server where the subscribers will hit first in order

to access the meeting service. The DNS A record will be set using a public IP

address. If the server is behind a NAT where the server has got a private IP,

Dynamic DNS (DDNS) can be configured in the gateway router to ensure the DNS

is reachable from outside network. However, in case of setting the Fully Qualified

Domain Name (FQDN) following command needs to be executed:

sudo hostnamectl set-hostname meet

Later, the same FQDN is inserted in the /etc/hosts file, associating it with the

loopback address:

127.0.0.1 localhost

x.x.x.x connect.uiu.ac.bd

where the x.x.x.x is the server's public IP address. Finally on the same machine we

need to test that the server can be reachable by ICMP ping test with following cmd:

ping "$(hostname)"

Once the reachability of the server is ensured via the DNS Configured, the Jitsi

repository packages to be downloaded and added in the server. One thing is to make

sure that, the server has got internet connection to download and update the

repositories as needed.

5.2.3 Jitsi package repository update

Following command will download and add the Jitsi repositories from the Jitsi

Website and update the package sources:

curl https://download.jitsi.org/jitsi-key.gpg.key | sudo sh -c

sudo apt update

 13

5.2.4 Setup and configure your firewall

Since, Jitsi Meet works over traditional TCP Protocol, here is the list of

ports (Figure 5) to be allowed in the firewall security policy to allow traffic

to the Jitsi Meet server:

Port Protocol Service / Purpose

80 TCP SSL certificate verification / renewal

443 TCP Access over HTTP

4443 TCP Fallback media streaming network

10000 UDP Video/Audio Streaming

22 TCP SSH for remote access

Figure 5: Required Port and Services Chart

Since, Uncomplicated Firewall (UFW) is used as netfilter following

commands will open the above ports:

sudo ufw allow 80/tcp

sudo ufw allow 443/tcp

sudo ufw allow 4443/tcp

sudo ufw allow 10000/udp

sudo ufw allow 22/tcp

sudo ufw enable

Lastly, to check the firewall status, rntmto check the firewall status – ‘sudo

ufw status verbose’ is executed to confirm before proceeding to next steps.

If the Jitsi Meet server running behind NAT, the above ports needed to be

forwarded on gateway router towards the server's IP address.

 5.2.5 Encryption by TLS Certificate

As Jitsi Server communicate between peers over standard E2EE (End to

End Encryption) Encryption protocol, the certificate needs to be activated.

To create a certificate that is signed by a Certificate Authority, following

shell command needs to be executed:

sudo /usr/share/jitsi-meet/scripts/install-letsencrypt-cert.sh

https://jitsi.github.io/handbook/docs/faq#how-to-tell-if-my-server-instance-is-behind-nat

 14

To use a different self-signed certificate, first the certificate needs to be

created by ‘Let’s Encrypt’ of similar platform. Then start installing jitsi-

meet and choose to use own certificate option during installation.

But, it is always preferred to use a CA Certificate over self-signed

certificates for following reasons:

a. This will cause a warning on user’s browsers as browser is unable

to verify the server's identity remotely.

b. Mobile version of Jistsi Meet require a valid certificate from trusted

Certificate Authority, where self-signed certificate will not work.

5.2.6 Installing Jitsi Meet

Main job of installing Jitsi Meet will start with the following command which will

install the main repository.

sudo apt install jitsi-meet

during the installation the installer will check if the web server is configured with

either, Nginx or Apache and the virtual host is configured within that. If any of

them not found the installer will give error. In that case the prerequisite installations

are to be ensured first. During the step-by-step process following parameters needed

to be entered to complete the installation:

a. SSL/TLS Configuration: These steps are described in 5.1.2.5

paragaraph.

b. Hostname: The hostname of the Jitsi Meet instance needed to be

entered. in the form of Fully Qualified Domain Name (FQDN) or an

IP Address. This same hostname will be used for virtual host

configuration inside Jitsi Meets as well.

For this project, consider that the installation will run under the FQDN:

connect.cse.uiu.ac.bd and the SSL certificate and key is stored in this location:

/etc/ssl/ connect.uiu.ac.bd{crt,key}. Thereby, following Deb Conf variables net

command to be executed before installing the packages:

install debconf-utils package

And. The server will be ready with the core Jitsi Service. But prior to enable other

related peripheral services few more steps to be completed.

https://en.wikipedia.org/wiki/Certificate_authority

 15

5.3 Deploying Required Peripheral Services

After successfully installing the Jitsi Server, different components needed to be

configured separately to make the full project functional. A single server Jitsi

installation can handle limited size of concurrent conferences. The first limiting

factor in this is the video bridge component that handles the actual video and audio

traffic. It is easy to scale the video bridges horizontally by adding as many as

needed.

A standard jitsi setup architecture is based on Single Jitsi Meet Over Multiple Video

Bridge. The Jitsi-Meet server requires comparatively less resources like will

generally not have that much load (unless you have many) conferences going at the

same time. A 4 CPU, 8 GB machine will probably be fine.

5.3.1 Installation of Video bridge (s)

For installing video bridge similar debconf variables are executed as above

and install jitsi-videobridge. For video bridge, only following ports are

internally required between the Nginix and Videobridge.

a. Ports open to Public Interface:

• 80 TCP

• 443 TCP

b. Ports open to the video bridges only

• 5222 TCP (for Prosody)

• 5347 TCP (for Jicofo)

Following diagram (Figure 6) shows the basic architecture with defined port

number and traffic directions:

Figure 6: Single Jitsi, Multiple Video bridge Architecture

 16

5.3.2 Installing and Configuring NGINX

To deploy NGINX, we have to create the following configuration file in

location: /etc/nginx/sites-available/connect.uiu.ac.bd as usual. Then execute

this command:

apt install -y nginx

 After installation Nginix service need to be started and enabled by :

systemctl start nginx.service

systemctl enable nginx.service

5.3.3 Installing and Configuring Prosody

First the Prosody Package repository needed to be installed by :

apt-get install prosody

Add following config file in the root directory

/etc/prosody/prosody.cfg.lua

/etc/prosody/conf.avail/ connect.uiu.ac.bd.cfg.lua

Later the domain virtual host needed to be added along with the security

certificate and authentication of conference focus user and host.

5.3.4 Confirmation of installation

After above processes completed, for checking purpose a web browser

(such as Firefox, Chrome or Safari) needs to be running on the end user PC.

Type the URL (connec.uiu.ac.bd) or the IP Address used as Hostname in

the address bar.

If self-signed certificate used, most of the web browser requires a further

confirmation that the certificate is trusted. In case of using self-signed

certificates, this test may fail if running from an Apple or Android based

device’s browser.

After successful entry on the homepage, options to enter a new meeting

name will be displayed on the landing page. If the meeting room can be

successfully created and the meeting URL is accessible by remote users over

public html access, then it can be considered that Jitsi is deployed

successfully.

 17

5.4 Testing and Verification Through Testing and Verification process, the

system or components of the developed application is compared against the requirements

and specifications. Later the outcomes are evaluated to assess progress of design,

performance, suitability etc. For this project the architecture and deployed modules are

tested through step-by-step functional tests. The steps are described below with relevant

screenshots:

5.4.1 Access and Log in As said earlier, the project is deployed in UIU

Datacenter and the application is pointed towards the domain name:

www.connect.cse.uiu.bd

Through any standard web browser, the application can be accessed by using this

domain name (Screenshot 1).

Image 1: Landing Page of UIU Connect

At the center of the home page the “Start Meeting” button will initiate a new

conference room. To create a room, user must have a valid Host ID and Password

which will be prompted as soon as the room name is entered and Start Meeting

button is pressed (Image 2). The user must click “I am the host” to confirm his

Identity as a “Host”.

Image 2: Log in Page of UIU Connect

http://www.connect.cse.uiu.bd/

 18

5.4.2 Role of System Admin Any meeting room created in Jitsi requires a

valid host to confirm his/her Host ID and Password. Those IDs and Passwords are

created by the system admin at the Admin Panel. The URL for the admin Panel is:

https://connect.cse.uiu.ac.bd:5281/admin/

After log in as System Admin, s/he can add new “Host” as user in the admin panel.

The adding process is very simple and easy (Image 3). The super admin can also

change password, delete user and forcefully end any meeting session from the

admin panel as well.

Image 3: System Admin Panel

5.4.3 Hosting a Meeting with Host ID As described in Para 5.4.1, the host

has to click “I am the host” (Image 2), and then s/he has to enter the Host ID and

Password created by system admin in previous step (Image 3).

Image 4: Host Name and Password Entry

https://connect.cse.uiu.ac.bd:5281/admin/

 19

5.4.4 Starting a Meeting Upon successful entry of Host’s credentials, the

meeting room is created. Now the URL of the meeting room is changed with a

subdirectory name entered as the meeting room name at the home page. For

example, naming a meeting room as “dhaka” will automatically create a sub

directory URL as: https://connect.cse.uiu.ac.bd/dhaka/.This new URL has to be

shared with all participants of the meeting via SMS or Email.

Image 5: Staring a Meeting

5.4.5 On Screen Chat Function Subsequent Images will give an idea about

various control elements and components of a meeting room.

Image 6: Start a Chat

With Chat button, any user can start a Live Chat on the screen instantly. The user

will be asked to enter a chat “Nickname” at the beginning. (Image 6).

https://connect.cse.uiu.ac.bd/dhaka/

 20

5.4.6 Screen Sharing Option During a meeting, any user can share screen

for other users. The screen share mode works for full screen, specific browser tab

or application windows (Image 7)

Image 7: Sharing Screen during meeting

5.4.7 Sharing Meeting Link with Users Meeting Link URL can be shared

with the user directly from browser address bar or from the “Invite” button. The

Link URL can be directly shared by message, email or social media platforms. Jitsi

Meetings also facilitate users to embed in any webpage to host any webinar as well

which is a unique feature (Image 8).

Image 8: Sharing Meeting Link with Users

 21

5.4.8 Setting up Security Options As described in Chapter 6 later, the

WebRTC has got multiple security feature like Password Protection, End to End

Encryption etc. This security options can be setup for each meeting separately from

the “Security Option” button shown below (Image 9).

Image 9: Setting up Security Options

5.4.9 Control Features During Meeting Miscellaneous admin control features

like managing video quality, live streaming, mute everyone etc., are available in the

admin control panel shown below (Image 10). Other basic call functions like End,

Microphone (On/Off), Video (On/Off) are also embedded as any other standard

Video Conferencing Systems.

Image 10: Control Features

 22

Chapter 6

Implications and Security

6.1 Use Case Scenario of WebRTC

WebRTC permits a large number of applications for enterprise IT organizations,

service providers, system integrators and software package developers. There are

numerous opportunities for organizations and small to large enterprises to

implement WebRTC as their only communication platform. Few mentionable are:

6.1.1 On-line Video-Tele conferencing services Enterprises and service

providers may have online meetings, conferences, or webinars with lightweight

browser-based audio and video communication services.

6.1.2 Communications-enabled business processes Corporate IT organizations

can directly integrate real-time communication capabilities into business

applications and business processes to increase productivity, improve decision-

making and streamline workflows.

6.1.3 Online Learning and Knowledge Sharing Schools,colleges, universities

and other educational institutions can use for online distant learning and knowledge

sharing to the students and researchers for better collaboration.

6.1.4 Alternative to Mobile devices for enterprises In order to minimize

international mobile roaming charges and calling costs by allowing Wi-Fi calling,

business organizations can expand corporate communications services to

smartphone or tablet users.

6.1.5 Over the Top (OTT) Service Service provider can improve profit

margins, ensure market competitiveness and extend service reach to the end users

more effectively.

6.1.6 Communications-enabled Web apps Businesses may add audio,

video or chat to customer-facing Web pages or mobile apps to enhance customer

interactions and business development.

 23

6.2 Advantages of WebRTC

• Open source and free

• Unlimited time of usage

• Browser independent

• Standard WebRTC Protocols

• Easily available API and SDK

• Secure and encrypted

• Easy installation and support

6.3 Security of WebRTC There are many ways that WebRTC platforms can be

vulnerable to cyber-attacks. Like any other communication platforms, WebRTC

also has few security vulnerabilities which may occur on the source, destination or

even at the transmission network. Nevertheless, WebRTC solutions has few extra

security features in the architecture and resource usage policy, which place them in

advantageous position over other application platforms and frameworks.

6.3.1 Browser Trust Model A web browser typically enable the user to

access the content from the web server securely. In case of HTML and JS hosted in

the web server, the browser performs various actions at the end-user PC. In Browser

Trust Model of the WebRTC framework, browser can segregate those audio and

video streams with the help of sandboxing techniques to isolate the underlying

scripts from each other. Besides, all local security policies configured by user along

with identity checking parameters are checked for authentic connections.

6.3.2 Access to Media/Local Resources At present, most of the video /

audio conferencing systems commonly get access to the local file resources

including peripheral I/O devices to be functional at end user level. Unauthorized

access to the camera, microphone, and files is a great concern for user privacy and

plays a vital role for any such service to be reliable. In WebRTC, end user is

enforced by the platform to give those permissions explicitly which ensures an extra

level of data security ensure the security.

6.3.3 Media Encryption & Communication Security All network traffics

along with the media streams passed through various integral components including

signaling frameworks of WebRTC are encrypted. Each nodes generating media

streams ensure the encryption protocols are enforced at all levels. Basing on the

 24

latest encryption algorithm WebRTC framework encrypts different streams basing

on different channel types. Usually, Datagram Transport Layer Security (DTLS) is

used to encrypt the Data Stream. Besides, media streams are encrypted using Secure

Real-time Transport Protocol (SRTP).

6.3.4 DTLS: Datagram Transport Layer Security Generally, DTLS

provides extra layer of security to the data streams from falling a victim

of eavesdropping, tampering, or message forgery attacks. In WebRTC framework,

the data streams sent over RTC Data Channel are secured using DTLS. This is a

standardized protocol, which is embedded in all browsers that support WebRTC.

The built-in feature of DTLS also ensures the user to get the benefit without

installing it on the browser.

https://en.wikipedia.org/wiki/Eavesdropping
https://en.wikipedia.org/wiki/Man_in_the_middle_attack
https://en.wikipedia.org/wiki/Message_forgery

 25

Chapter 7

Conclusion and Future Works

7.1 Conclusion

In the present era of modern science and advance technologies, communication has become

a basic need for humankind. In the plea for growing awareness of major hacking incidents

in corporate world, eavesdropping in government systems and personal scandals - Data

Security has become a major concern for all systems. As a result, each and every entity is

implementing next generation security measures to all possible sectors of their IT

Infrastructure.

WebRTC is in a position that is more advantageous over other popular VoIP systems

available commercially in the technology market. As of now, commercial solutions are

more focused on consistency rather on security aspects. Considered the security aspect of

virtual video/audio communication as optional, presently most of the organization prefer

un-encrypted VoIP to save the budget. Larger entities at government and business domain

are playing lead role for this, choosing cheaper solutions rather than secured one. But as

WebRTC forbids unencrypted communication at any point of the implementation, it can

be point of more confidence that communication remain private and safer.

7.2 Limitations

WebRTC is an easy to deploy open-source solutions which is getting popular day by day.

Still this technology has got a major drawback that it is still under development. The

existing WebRTC API version 1.0 is only a working draft. The other major disadvantage

is the requirement of cross platform codecs which has to be supported by all browsers. Till

the date of writing this paper, the only royalty free VP8 codec is incorporated under this

agreement. However, some larger companies like Cisco are insisting on using H.264 and

H.265 codecs which are proprietary products and require purchase by the developers. If

this proposal is agreed upon, freelancer community developers will be trouble in future.

 26

7.3 Future Works

Keeping security in mind, the design of WebRTC enforces or encourages important

security concepts in all components. Due to the strong focus on secure communication,

WebRTC is currently considered by most organizations as the secure web-based

communication means all around the world. Lastly, to round everything off, WebRTC is

available at open-source platform at free of cost, providing a scalable and reliable platform

for developers’ community to build their custom-tailored application to be used with self-

branding and labels.

 27

References

[1] J.K. Nurminen, A. J. R. Meyn, E. Jalonen, Y. Raivio, and R.G. Marrero, “P2P Media

Streaming with HTML5 and WebRTC”, Proc. IEEE Conference on Computer

Communications Workshops, April 14-19,Turin, pp.63-64, 2013.

[2] K. Haensge and M. Maruschke, "QoS-based WebRTC access to an EPS network

infrastructure," 2015 18th International Conference on Intelligence in Next Generation

Networks, Paris, 2015, pp. 9-15, doi: 10.1109/ICIN.2015.7073800.

[3] W. Kim, H. Jang, G. Choi, I. Hwang and C. Youn, "A WebRTC based live streaming

service platform with dynamic resource provisioning in cloud," 2016 IEEE Region 10

Conference (TENCON), Singapore, 2016, pp. 2424-2427, doi:

10.1109/TENCON.2016.7848466.

[4] K. De Moor, S. Arndt, D. Ammar, J. Voigt-Antons, A. Perkis and P. E. Heegaard,

"Exploring diverse measures for evaluating QoE in the context of WebRTC," 2017 Ninth

International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, 2017,

pp. 1-3, doi:

[5] B. Sredojev, D. Samardzija and D. Posarac, "WebRTC technology overview and

signaling solution design and implementation," 2015 38th International Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO),

Opatija, 2015, pp. 1006-1009, doi:

10.1109/MIPRO.2015.7160422.10.1109/QoMEX.2017.7965665.

[6] A. Gouaillard and L. Roux, "Real-time communication testing evolution with WebRTC

1.0," 2017 Principles, Systems and Applications of IP Telecommunications (IPTComm),

Chicago, IL, 2017, pp. 1-8, doi: 10.1109/IPTCOMM.2017.8169751.

[7] C. Toğay and A. Levi, "WebRTC based augmented secure communication," 2016 24th

Signal Processing and Communication Application Conference (SIU), Zonguldak, 2016,

pp. 1621-1624, doi: 10.1109/SIU.2016.7496066.

[8] N. M. Edan, A. Al-Sherbaz and S. Turner, "Design and evaluation of browser-to-

browser video conferencing in WebRTC," 2017 Global Information Infrastructure and

 28

Networking Symposium (GIIS), St. Pierre, 2017, pp. 75-78, doi:

10.1109/GIIS.2017.8169813.

[9] S. Ouya, K. Sylla, P. M. D. Faye, M. Y. Sow and C. Lishou, "Impact of integrating

WebRTC in universities' e-learning platforms," 2015 5th World Congress on Information

and Communication Technologies (WICT), Marrakech, 2015, pp. 13-17, doi:

10.1109/WICT.2015.7489664.

[10] Huaying Xue and Yuan Zhang, "A WebRTC-based video conferencing system with

screen sharing," 2016 2nd IEEE International Conference on Computer and

Communications (ICCC), Chengdu, 2016, pp. 485-489, doi:

10.1109/CompComm.2016.7924748.

[11] R. R. Chodorek, A. Chodorek, G. Rzym and K. Wajda, "A Comparison of QoS

Parameters of WebRTC Videoconference with Conference Bridge Placed in Private and

Public Cloud," 2017 IEEE 26th International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE), Poznan, 2017, pp. 86-91, doi:

10.1109/WETICE.2017.59.

[12] E. André, N. Le Breton, A. Lemesle, L. Roux and A. Gouaillard, "Comparative Study

of WebRTC Open Source SFUs for Video Conferencing," 2018 Principles, Systems and

Applications of IP Telecommunications (IPTComm), Chicago, IL, 2018, pp. 1-8, doi:

10.1109/IPTCOMM.2018.8567642.

[13] RFC 4566, Session Description Protocol. Available at :

https://tools.ietf.org/html/rfc4566.

[14] RFC 3711, Secure Real-time Transport Protocol (SRTP), Available at :

https://tools.ietf.org/html/rfc3711

https://tools.ietf.org/html/rfc3711

