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Abstract

Development in deep neural networks in particular to natural language pro-
cessing has motivated researchers to apply these techniques in solving chal-
lenging problems like machine translation, automatic grammar checking,
etc. In this paper, we address the problem of Bangla sentence correction
and auto completion using decoder-encoder based sequence-to-sequence re-
current neural network with long short term memory cells. For this pur-
pose, we have constructed a standard benchmark dataset incorporating
mis-arrangement of words, missing words and sentence completion tasks.
Based on the dataset we have trained our model and achieved 79% ac-
curacy on the test dataset. We have made all our methods and datasets
available for future use of the other researchers from: https://github.
com/mrscp/bangla-sentence-correction. An online tool have also been
developed based on our methods and readily available to use from: http:

//brl.uiu.ac.bd/s2sl
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Chapter 1

Introduction

With upgrading of technology, our textual communication through the technology is
increasing day by day. There has been a huge growth among the number of users in
the online community and social media that uses Bangla as medium of communication.
Error detection and correction in text based Bangla sentence correction using machine
learning techniques is now more relevant due to availability of text online more than
any time in the past. Among the traditional methods used for this purpose are morpho-
logical analysis [I], 2], Hidden Markov Models [3], active learning [4], natural language
generation based approach [5], n-gram based methods [6] etc.

In contrast to the traditional methods, very recently recurrent neural networks
(RNN) [7] and long short term memory (LSTM) networks have gained much success in
natural language processing tasks. The advent of graphical processor unit (GPU) based
computations have even accelerated the research in this field. Although they have been
used in the context of many other languages [8 9] providing innovative solutions to
several problems like text correction [10], sentiment analysis [I1], personality detection
[12], etc., the development is not much found in the context of Bangla language. The
application of deep learning in the context of Bangla Computing has been so far limited
to speech recognition [I3] and hand written digit recognition [14].

Even though there had been a number of work in the literature of natural language
processing and computing in Bangla, still there are a number of challenges in the
field that needs to be addressed [I5HI7]. In the literature for Bangla Natural Language
Processing and Bangla Computing in general, we have observed a number of difficulties

that are added to the challenges in the research and development. Firstly, there is lack



of publicly available standard datasets. Most of the researchers have worked on very
small sized datasets and most of them are not available to future use. There is a need
of publicly available datasets prepared with a standard methodology. Secondly, the
methods proposed in the literature are not available for use or for research purpose.
Most of the authors do not provide their programs or software to make the research
usable, extendible and reproducible for the other researchers. Lastly, methods are not
implemented or available for use of the general users outside the research community.

In this paper, we have addressed all the three challenges faced by any researcher
or user of Bangla Computing tools specially in the field of Bangla Natural Language
Processing. We address the problem of Bangla Sentence error correction and auto-
completion. Firstly, we have constructed a large dataset using a controlled random-
ized procedure. Our benchmark dataset contains several types of errors like missing
words, misplaced words and wrongly arranged words. Based on the dataset that we
have used, we have implemented a sequence to sequence learning model that takes a
wrong sentence as input and predicts a correct sentence for it. Our proposed method
uses a encoder-decoder architecture sequence-to-sequence of deep learning networks.
Here, the decoder is a bidirectional dynamic recurrent neural network with long short
term memory (LSTM) cell. After training with the constructed dataset, our model
was able to achieve 79% accuracy on the test set. We have also implemented a
web based tool based on our model which is capable of correcting given input sen-
tences. The tool for automated sentence correction is available to use from http:
//brl.uiu.ac.bd/s2s. We have also made our methods and datasets used in this
paper available for other users for the sake of scientific purpose from https://github.
com/mrscp/bangla-sentence-correction. The main contributions made in this pa-

per are enumerated as following:

1. We have constructed a benchmark dataset for Bangla sentence correction from

real sentences by introducing noise of several types in a controlled way.

2. We have proposed a deep sequence to sequence model for sentence correction

using recrurrent network based encoder-decoder model.

3. We have trained our model using GPU based system to reduce the training time

on the data.


http://brl.uiu.ac.bd/s2s
http://brl.uiu.ac.bd/s2s
https://github.com/mrscp/bangla-sentence-correction
https://github.com/mrscp/bangla-sentence-correction

4. We have developed an online tool for sentence correction and made all our mate-

rials and methods available online for future use by other researchers.

To the best of our knowledge, this is a first kind of research work on Bangla sentence
correction using deep neural networks. We believe our data, methodology and the
developed tool for Bangla sentence correction will serve the researchers and the general
users in the future.

Rest of the paper is organized as follows: Chapter 2]briefly describes the related work
in the literature; Chapter [3] presents our methods; Chapter [4] presents experimental
results and Chapter [5| concludes the paper with a summary and a direction for future

work.



Chapter 2

Related Work

There had been a number of research work on Bangla grammar checking [3} 5], parts of
speech tagging [18] and in the field of general natural language processing. Traditional
methods include methods like morphological analysis [I, 2], Hidden Markov Models
[3], active learning [4], natural language generation based approach [5], n-gram based
methods [6] etc. One of the earlier work done on Bangla computing was by Sengupta
et al. in [2] where the authors used morphemes and finite state automata for auto-
matic spelling error correction in Bangla sentences. Sajib Dasgupta and Vincent Ng
[1] used unsupervised methods of morphological learning and achieved superior results
on supervised parsers for Bangla language. The dataset they used had 4110 words.

A rule based filter with Hidden Markoc Models based parts-of-speech tagger was
used in [3] to construct valid sentences from synthetically created erroneous sentences.
They have used substitution, insertion, deletion and transposition of words in a valid
sentence and used a dataset with nearly half million sentences collected from websites.
In a subsequent work [4], the same authors proposed a complexity measurement metrics
for grammar correction in Bangla sentences. They have made their grammar checker
and complexity tester methods online. However, these methods are no more available
to test.

Alam et al. [6] used n-gram based methods for grammar checking in a sentence.
They have used a dataset of 866 sentences and achieved 63% accuracy using n-gram
analysis of words and part-of-speech tagging for grammar checking. Kundu et al. [5]
used a natural language generation approach to detect and correct errors in Bangla

sentences. Hasan et al. [I§] presented a review and comparison among different parts-



of-speech tagging methods. Parts-of-speech tagging is one of the pre-steps in grammar
checking models used by the earlier group of researchers. Another prominent direc-
tion in the Bangla natural language processing is the sentiment analysis. Das et al.
[19] proposed a lexicon of Bangla phrases called ‘SentiWordNet’ following the similar
approaches done for English. Sarker et al. [20] proposed a sentiment analysis system
for Bangla tweets using a Naive Bayesian model. Their proposed model also works for
other majod Indian language, Hindi.

With the advent of Graphical Processing Unit (GPU) based computing techniques
that enabled parallel computation and several new techniques for training and repre-
sentation of neural networks deep learning has become very popular and effective in
recent years and has been widely use to solve various problems in natural language pro-
cessing where traditional machine learning methods have been used earlier [10]. One
of the major advantage in deep learning is that the feature engineering is now part
of the classifier and its representation and thus the layers of the neural networks are
designed in a way to generate inherent properties of the grammar and structure of
the languages. The techniques that were earlier used exclusively in other application
areas like image processing, speech recognition, etc are now being tested with success
in natural language processing [8-12].

Ghosh et al. [I0] proposed a sequence to sequence architecture for text correction.
They have used character based convolutional neural network gated recurrent units as
encoder and word based recurrent units for decoders and used them for text correction
and auto-completion in keyboard decoding. Poria et al. [8] used deep convolutional
networks for multi-modal sentiment analysis of short video clips describe in one sen-
tence. Santos et al. [I1] used feed forward architecture with convolutional network to
show the effectiveness in sentiment analysis on short text messages. Document based
features were used in [12] to feed them into a convolutional neural network where the
extracted features were used in a hierarchical manner to detect five personality traits.
Joshi et al. [9] used long short term memory based architecture for sentiment analysis
on mixed Hindi-English texts.

The use of Deep Neural Networks are not much found in the Bangla language
processing. However, a few authors have used them for other fields in the Bangla com-
puting domain like handwritten character recognition [14], speech recognition [13], etc.

A two step deep belief network was used in [14] for recognition of handwritten Bangla



characters. In the first stage, deep belief networks were employed for unsupervised
feature learning followed by a supervised learning stage where network parameters are

learned by fine tunning.



Chapter 3

Proposed Method

In this chapter, we present the methodology of our paper. A system diagram of our
methodology is given in Fig. The first step starts with Bangla content collection
from various sources followed by a pre-processing step, where the sentences are collected
and converted to be applicable for a Word2Vector representation. Each sentence goes
under perturbation for noise generation in the input valid sentences. After that, a
Word2Vector representation is made for each of the sentences which are feed to a
sequence to sequence model [21I]. The trained model is then used to predict correct
sentences from a given input wrong sentence using inference model. Rest of this section

describes each step followed in the methodology in detail.

3.1 Bangla Content Collection

We collected Bangla stories, posts, news from various website through the internet.
Currently, our dataset contains about only 250K of sentences. These sentences were
collected from 3000 stories, posts and news collected from the web. Figl3.2] shows a
histogram of length of sentences collected in this step. We could see that maximum

length of the sentences were 20. Two websites were used to collect the content:

1. Protom Alo: The most popular Bangla news paper (https://www.prothomalo.

com/).

2. Somewherein Blog: The most popular Bangla blog (http://www.somewhereinblog.
net/).


https://www.prothomalo.com/
https://www.prothomalo.com/
http://www.somewhereinblog.net/
http://www.somewhereinblog.net/

3.2 Content Pre-Processing
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Figure 3.1: System diagram for the methodology used in this paper.

3.2 Content Pre-Processing

After collection of the Bangla sentences, the next step was the pre-processing of the
sentences. In this step, for each of the sentences in the input dataset, we considered
them as correct sentences. After that, we have used random perturbation to introduce
noise in each of the sentences to produce incorrect sentences. Three types of errors

were introduced in each sentence using a controlled randomized procedure:

1. Auto-complete: A position was randomly selected in the given correct sentence
and the sentence was divided into two parts. The first part was considered as the
input sentence and the last part was considered as the output or auto-complete

part.

2. Wrong Arrangement: Two words in the sentence were selected randomly and the

positions were swapped to introduce mis-arrangement error.

3. Missing Words: A word in a random position was selected in the sentence and

was deleted to introduce missing word error.

Thus all the sentences collected were converted to sentence pairs. Following this

procedure, we created a massive dataset with 5 million input-output pairs. Distribution



3.3 Word Embeddings

0.200 A

0.175 1

0.150 ~

0.125 -

0.100

Probability

0.075 -

0.050 -

0.025

0.000 -
o0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Word Count

Figure 3.2: Histogram of word counts or sentence length for each Bangla sentence col-
lected in the dataset.

of the errors in these pairs of sentences are shown in Fig[3.3] as total percentages. A

few example input-output sentence pairs are shown in Fig[3.5

3.3 Word Embeddings

In this step, we tokenized the sentences and constructed the vocabulary. For each word
in the vocabulary, frequencies were then calculated for the occurrences of them in the
whole dataset. After the creation of the vocabulary, we have replaced the rare words
of words with the symbol ‘UNK’ that stands for ‘UNKNOWN’. We considered a word
with frequency less of equal to 3 as rare word. All the occurrences of numbers were
replaced by the token ‘NUM’. Figl3.4|(a) shows a toy example dataset with 3 sentences
and vocabulary of size 6. Figc) shows the count of each word in the vocabulary

constructed from the input sentences.



3.4 Sequence to Sequence Model
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Figure 3.3: Percentage of sentence pair dataset for each type of perturbations generated

in the randomized noise generation technique.

After the vocabulary has been created and the frequencies has been calculated,
each sentence pair in the pre-processed dataset were replaced by the word embeddings
created from the vocabulary. Each word in the the vocabulary including the UNK
token were numbered using a real number system given to each of the words as in
sorted order of frequency. Figb) shows the vector encodings of the input sentences

in the toy example.

3.4 Sequence to Sequence Model

After we have successfully created the dataset and converted them using word embed-
dings into a vector suitable for neural network, we have to train the model using a se-
quence to sequence model. In our proposed method, we have used encode-decoder archi-
tecture. Our encoder is a Bidirectional Dynamic Recurrent Neural Network (BDRNN)
[22]. However, the decoder is a custom recurrent neural network that allows more

control. Attention mechanism has been used to communicate between encoder and de-

10



3.5 Recurrent Neural Network
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Figure 3.4: A toy example of Word2Vec representation of input sentences: (a) input
sentences in Bangla, (b) output Word2Vec Encoding and (c) assignment of real numbers

to each words based on the frequency of occurrence.

coder. For each of the Used RNNs Long Short Term Memory (LSTM) cell were being
used. The rest of this section describes each of the individual components and other

configurations used in the proposed method.

3.5 Recurrent Neural Network

In recurrent neural networks [7], outputs are fed into the input to the next step and a
loop is created. Thus networks are able to predict at any time of a sequence based on
the inputs and predictions made in the previous steps and thus very much suitable to
sequences and lists. An unfolded recurrent neural network is basically equivalent to a
series of feed forward networks forwarded information from one to another. RNN and

its equivalent feed forward network is shown in Fig[3.6] In this paper, we have used bi

11




3.6 Long Short Term Memory (LSTM) Cell
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Figure 3.5: Input-Output sentece pairs generated in the pre-processing and used in the

inference model.

©

3.6 Long Short Term Memory (LSTM) Cell

Figure 3.6: RNN and its feed-forward equivalent network.

In natural language processing tasks as in auto-completion of sentences, given any word,
suppose we are trying to predict the last word. We need only to look at the recent
information in the network for the prediction task. However, if the context on which
the prediction is dependent then recurrent networks required to have long short term
memory cells [23]. A typical LSTM cell is shown in Fig[3.7]

3.7 Encoder Decoder Architecture

We used an encoder-decoder architecture with attention mechanism. The block diagram
of our architecture is shown in Fig. Note that, in the case of natural language
processing and specially sentence correction, the input sentences are of various lengths.

Moreover, the output might also be of arbitrary length and independent of the input

12



3.7 Encoder Decoder Architecture
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Figure 3.7: A typical LSTM cell.

sentence (in auto-completion, missing words, etc).

In the encoding phase, all the words embedded into vectors are fed into the bidrec-
tional RNN with LSTM cells. The data is transfered from left to right to each cell and
words are learned based on the input in the current state and the previous states. En-
coder generates output and a hidden state, after which the decoder collects the hidden
state from the encoder and generates output or words for the corrected or completed
sentence sequentially.

Within this basic encoder-decoder scheme, attention mechanism [21] uses a context
vector in between the encoder and the decoder. It collects output of all the units and
captures the model of the language by calculating distribution of the words from a
global point of view. Thus the decoder is able to generate words based on distant
context hidden in the input sequence of words and able to work for various lengths of

input sentences.

13



3.7 Encoder Decoder Architecture

N e Ok W W <>

context . 1 I I I E
vector
attention
weights
A ¥ A ¥
_H_‘_'_"‘—‘—-—._
— = — —— — TEN R, - >
— = — —— — RN R, — >

N e ©R WY (e <> |y ek w3 W (S
ENCODER DECODER

Figure 3.8: Encoder Decoder Architecture implemented with Recurrent Neural Networks
with with LSTM cells with attention mechanism.
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Chapter 4

Experimental Analysis

All experiments done in this research was run on a Machine with Intel Core i7-7700
3.60 GHz CPU, equipped with 32 GB physical memory with running operating system
Ubuntu 14.4 and a NVIDIA Titan Xp GPU of 12GB. All the programs were imple-
mented using Python 3.5 and TensorFlow library. We have used input embedding size
of 20 and number of encoder hidden units were kept 128. As the length of the output

varies, we used twice as many decoder units in the model.

4.1 Training of Data

As the dataset built for this proposed model was large enough (5 million sentence pairs),
we followed the general recommendation for deep learning [24] while partitioning the
data for experiments. The dataset was randomly shuffled. After shuffling, we have

divided the original dataset into three parts.
1. Training Set: It contained 95% of the dataset.
2. Validation Set: It contained 4.5% of the dataset.
3. Test Set: It contained 0.5% of the dataset.

We trained our sequence to sequence model using batches. In each epoch we have
used 4000 batches and with a batch size of 512. The total number of epochs was 15. In
case of validation, 200 batches were processed. However, this parameter had a value of
40 in the case of test set. The loss function that was used for training and validation

is softmax cross entropy.

15



4.2 Benefits of GPU Implementation

We have used inference model for testing. For each of the sentence pairs in the
dataset (validation or test), the input sentence was fed to the encoder of the network.
The output from the decoder was then converted to human readable format or string
using the inference model. In Fig. (a), we plot the loss function in both training and
validation phase against the training epochs. Note that, our method is not overfitting
the dataset as the validation loss function in almost similar to the training loss function
and the model converges after some point. Based on this we have taken the model after
the 15 training epochs, since after that the model starts to overfit the data and the loss

function diminishes quickly.

5 ]
—— Train 08 —— Accuracy
valid
0.7
4
0.6
0.5
31 )
(0] ©
@ 5 0.4
8
< 53]
5] 03
0.2
L \\_\_; o1
e 0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Epoch Epoch

(a) (b)

Figure 4.1: Plot of (a) loss function against epochs for train set and validation set and

(b) accuracy against epochs on test set.

After training, we have stored the best model that does not overfit and tested the
accuracy of the model. Fig. b) shows the plot of accuracy on the test set for models
learned at different epochs. Note that, the best accuracy achieved by our model is 79%

on the test set.

4.2 Benefits of GPU Implementation

We have observed the benefits of training using GPU processor. At first, we started
our training with only CPU model and used 128 instances per batch, 1000 batches per
epoch and 15 epochs in total. We were able to train only upto half million of the data
which is only one tenth of the full dataset. This particular dataset had a vocabulary of

16



4.3 Availability of Materials

size 6000. It took 11 hours to train this model and beyond this, the CPU model was
not able to train due to memory shortage.

However, when trained with GPU processor, the vocabulary size was 28000 and the
total instances in the dataset were five million, ten times compared to the CPU model
and was able to train that model only in 8 hours using 15 epochs, 4000 batches per
epoch and 512 instances per batch. We could easily observe the speed up achieved by
the GPU implementation.

4.3 Availability of Materials

It was one of the challenges for us to use any of the datasets previously constructed for
various natural language processing task since they are either too small in size to be
suitable for training a deep learning network or they are unavailable. To overcome this,
we have constructed our own dataset and made this available via online repository. We
have also failed to compare our method with any of the previous methods due to the
unavailability of their methods or codes. However, we make sure that our results are
reproducible and re-usable by other researchers and made our code and implementations
available online. All the materials used as data and methods implemented as in code are
freely available from: https://github.com/mrscp/bangla-sentence-correction.
We have also implemented an online web application for the general users for
use and to demonstrate the usability of our method. This web application takes an
input sentence from the user as input which is supposedly incorrect and produces
the suggestion for a correct sentence. Our web application is available to use from:
http://brl.uiu.ac.bd/s2s. A screenshot of the web application is given in Fig.
The website has a very simple interface and also provides a few invalid sentences in
human readable format that was used in the testing of the system and could be used

by the general users.

17
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4.3 Availability of Materials

Bangla Sentence Correction
Using Deep Neural Network Based Sequence to Sequence Learning

This is the beta version of the project, we will create a API service for bangla sentence correction online soon.

A FFNE 0T *FNTCH (5105 CIaITod 241G Correct

Here is some example invalid sentences: click here

4 T2 90T (9108 *ENHTRE OPrenTord 26

Figure 4.2: Screen shot of the web application implemented based on the proposed model
in this paper.
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Chapter 5

Conclusion

In this paper, we have proposed an encoder-decoder architecture of sequence-to-sequence
of deep neural network for Bangla sentence correction and auto completion. Here, the
encoder is a bidirectional dynamic recurrent neural network with long short term mem-
ory (LSTM) cell. Decoder is a raw recurrent neural network, where we created that is
more primitive version of dynamic recurrent neural network that provides more direct
access to the input each iteration, it also provides when to start and when to stop
reading the sequence and what to emit for the output. It shows how the attention
mechanism works in the sequence-to-sequence model. After training the model with
the dataset, our model is capable of producing correct sentence and complete incom-
plete Bangla sentence. Our proposed model achieved 78% accuracy of correcting three
kind of error and auto completion. Those are invalid arrange of words in a sentence,
missing word in a sentence and auto completion. We have made our methods and data
available for the researchers and also implemented an online tool for general users.
We want to upgrade to make better experience of using bangla language in written
communication through the technology. Currently, our system just working with words
in the system, in future will make a system that will be capable of correct spelling of
the words too. The basic thing about performance for this model is the dataset. If
the dataset is good, the result will be good as well. So we will improve the dataset in
the future, and it is the most vital thing, we suggest. Also, we will improve the model
as well, natural machine translation (NMT) model of deep networks is becoming the
standard over sequence-to-sequence model on language modeling. So will implement

this version of deep networks to correct the sentence and the spelling. Moreover, we

19



could use sequence-to-sequence convolutional gated recurrent encoder gated decoder,

proposed in a recent research [10].
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