

Integration of IoT and Cloud Computing: Development of an

Intelligent Face-recognition System

Asif Ahmed

Student Id: 011 141 068

Md. Younus Bipul

Student Id: 011 141 075

Syad Md. Imran

Student Id: 011 141 086

Niger Sultana Tahniat

Student Id: 011 141 088

A thesis in the Department of Computer Science and Engineering presented

in partial fulfillment of the requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

United International University

Dhaka, Bangladesh

November, 2018

©Asif Ahmed, 2018

 i

Declaration

We, Asif Ahmed, Md. Younus Bipul, Niger Sultana Tahniat and Syad Md Imran, declare

that this thesis titled, “Integration of IoT and Cloud Computing: Development of an

Intelligent Face-recognition System” and the work presented in it are our own. We

confirm that:

 This work was done wholly or mainly while in candidature for a BSc degree at

United International University.

 Where any part of this thesis has previously been submitted for a degree or any

other qualification at United International University or any other institution, this

has been clearly stated.

 Where we have consulted the published work of others, this is always clearly

attributed.

 Where we have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely our own work.

 We have acknowledged all main sources of help.

__

Name: Asif Ahmed, ID: 011 141 068, Dept: CSE

__

Name: Md Younus Bipul , ID: 011 141 075, Dept: CSE

__

Name: Syad Md Imran, ID: 011 141 086, Dept: CSE

__

Name: Niger Sultana Tahniat, ID: 011 141 088, Dept: CSE

 ii

Certificate

I do hereby declare that the research works embodied in this thesis entitled “Integration

of IoT and Cloud Computing: Development of an Intelligent Face-recognition

System” is the outcome of an original work carried out by Asif Ahmed, Md. Younus

Bipul, Niger Sultana Tahniat and Syad Md Imran under my supervision.

I further certify that the dissertation meets the requirements and the standard for the

degree of BSc in Computer Science and Engineering.

__

Salekul Islam

Professor and Head, CSE

United International University

 iii

Abstract

IoT has seen steady growth over recent years with smart home appliances, smart personal

gear, personal assistants, industrial assistance and many more. Devices used in the

Internet of Things (IoT) are often low-powered with limited computational resources.

Whereas, the computation part is done in the backend Cloud server. In this thesis, we

compare how the scenario changes when computation is done in edge Cloud, near to the

data source and thus reducing the distance of network hop and size of data for IoT scope.

We developed a face recognition framework as an IoT application with computational

server in two different infrastructures: a local, near to the client as edge Cloud, and also in

commercial Cloud platform. Also implementing a part of computation in edge node or

gateway can decrease the number of data packets in a huge amount and therefore, reduces

network latency. In our thesis, the processing time of our developed system and network

latency have been measured and compared. The results demonstrate that using edge

Cloud, rather than core Cloud is comparably faster in terms of network latency.

Moreover, decreasing the size of the transmitted data by computing in client side, reduces

network latency and congestion.

 iv

Acknowledgement

We would like to thank our supervisor Dr. Salekul Islam for exposing us to this real

world application and supporting us, not only to make a thesis document, but to learn a

great length on programming and development in IoT, Cloud computing and networking

sectors.

Also we would like to acknowledge the developers of the open-source libraries that we

have used in our application.

And in last, a huge appreciation for our family and friends for their support and advice.

 v

Table of Contents

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

1. Introduction.. 1

1.1 Motivation.. 1

1.1.1 Cloud in the Internet ... 2

1.2 Objective .. 3

1.3 Organization .. 3

2. Background and Literature Review ... 4

2.1 Internet of Things (IoT) ... 4

2.2 Cloud Computing .. 5

2.3 Edge Computing .. 6

3. Real Time Face Recognition ... 10

4. Results and Analysis .. 22

5. Conclusion ... 26

6. References.. 27

7. Appendix A .. 29

Kaa Scheamas .. 29

Sample Face Data .. 31

Programming Code .. 34

 vi

LIST OF TABLES

Table 1: Configuration of hardwires used ... 15

Table 2: Average time of feature extraction .. 22

Table 3: Average network latency for edge Cloud and core Cloud (Client to Server) 23

Table 4: Average network latency for notification (Server to Client) 24

Table 5: Classification time in server (Dataset – 1000 face image) 24

Table 6: Average classification time for different size of dataset 25

Table 7: Average total time of Face Recognition process ... 25

 vii

LIST OF FIGURES

Figure 1: Edge Cloud-based next-generation Internet architecture [2] 2

Figure 2: Architecture of Cloud Computing .. 5

Figure 3: Inside the Edge Cloud [2] .. 6

Figure 4: Edge Computing Paradigm .. 7

Figure 5: Histograms of Oriented Gradients (HOG) to detect face 11

Figure 6: Generating face encodings from facial image .. 12

Figure 7: Middleware Kaa ... 16

Figure 8: Flow diagram of Detection and Encode Module ... 20

Figure 9: Flow diagram of Data Transfer Module... 20

Figure 10: Flow diagram of Notification Module ... 20

Figure 11: Flow diagram of server side application .. 21

Figure 12: Feature extraction time difference in raspberry pi and pc................................ 22

Figure 13: Network latency for edge Cloud and core Cloud (Client to Server) 23

Figure 14: Network latency for notification (Server to Client) ... 23

Figure 15: Classification time for different scale of dataset .. 25

file:///D:/Users/as99i/Desktop/EC_on_IoT/Edge%20Computing%20on%20IoT.docx%23_Toc530477776
file:///D:/Users/as99i/Desktop/EC_on_IoT/Edge%20Computing%20on%20IoT.docx%23_Toc530477778

 1

Chapter 1

Introduction

1.1 Motivation

Internet of Things (IoT) and Cloud computing, among many terms in community of

information technology, are the most hyped and popular topics of this era. Modern day

computer science, engineering research and development is basically running on these

trends. Cloud computing has been proven to be one of the most reliable method for its

scalability, pay-per-use, workload resilience and flexibility. A lot of applications use

Cloud computing. Reliability of connection, availability of high bandwidth of Internet,

elasticity and pay-as-you-go business style are some of the reasons of depending on a

great scale on Cloud computing. The uprising of large scale IoT application and

appliances rely on the Cloud paradigm. Both data-intensive and computation-intensive

applications are developed and deployed based on Cloud framework. As the rise of Cloud

era uplifted the IoT world, lots of research is undergoing on various short-hands and

challenges based on connectivity and security for Cloud computing.

IoT applications are created based on collecting real world and real time data, putting

through, in some cases, vast network of algorithms and getting desired result. Thus, in

most scenarios, IoT appliances require low response time, least network latency, and also,

less pressure on bandwidth holds a great deal of advantage. The data traffic to move the

huge number of tiny data packets from devices, through the core network to the Cloud,

occupying the Internet, increases network traffic congestion and decrease network

bandwidth. It is a huge bottleneck. Rather than transferring data to Cloud, servers which

are fitted with thousands of stack of resources, far away from data, edge computing

comes in as a solution.

 2

1.1.1 Cloud in the Internet

The Internet is often called “the network of networks”, because it consists multiple small

heterogeneous and autonomous network, where IoT takes or will take a major amount of

ground. At present, the Internet can be roughly architectured into three different layers:

core, edge and access (figure 1) [1]. The small networks are managed by Internet Service

Providers (ISP) and they are connected to the core network. The core network

interconnects all the small networks with high speed and high capacity routers and

switches to interconnect information. The small networks are known as edge network.

These small networks also consist multiple number of router and switches nearer to the

end user. The end users connect to the Internet through the access network.

Following the definition of core and edge network in the Internet architecture, the Cloud

architecture can be classified as Core Cloud, and Edge Cloud. In our thesis, we name the

public Cloud which have been built around the world by the commercial vendors, as Core

Cloud. Due to the limited number of service point availability of core Cloud, the end user

or in our case, the ‘thing’ has to pass data through the core of the Internet, hopping

multiple routers and switches.

Figure 1: Edge Cloud-based next-generation Internet architecture [2]

On the other hand, the edge Cloud, which is at the edge of the network, consists of

multiple smaller, generic clouds [2], nearer to end users (figure 1). It proceeds with the

 3

benefit bringing computation closer to the client allowing for scalability, lower latency

and smaller client-side footprint (e.g. [3]). The IoT applications deployed in the edge

Cloud will have lower latency, and will decrease network congestion.

1.2 Objective

In our thesis, we are demonstrating Edge Cloud computing vs core Cloud computing,

implementing real time face recognition as a data-intensive IoT application, both on an

edge Cloud and on a core Cloud, and studying the difference of performance for our

facility. This thesis gives the experimental results of Face Recognition as an IoT

application deployed in edge Cloud (i.e., UIU data center) and a core Cloud (Microsoft

Azure).

For all types of IoT applications, raw data is sent to Cloud for computation and getting

desired result back to device. In most developments of Face Recognition system (eg. [4]),

raw data, as in frames or image with human face is sent out to classify identity from a

dataset. For which, the network of that system costs much more data packets and

bandwidth allocation. The processing time increases with the number of faces in that very

image [4]. In our implementation, we have pre-processed the data in client that will

reduce the size of the data to be transferred. And also, following the pre-processing, each

face is separated and sent as individual data, if there are multiple face in one frame. Thus,

proposing normalizing and pre-processing raw data can reduce the size of data to be sent,

can save huge amount of network allocation.

1.3 Organization

The remainder of this thesis is organized as follows. In Section 2, we derived a study on

the key concepts from previous literature – Internet of Things (IoT), Cloud Computing

and Edge Computing. Description of the architecture and implementation methodologies

of our case study, Real Time Face Recognition as an IoT application, is addressed in

section 3. Section 4 gives a comparison of the performance of our deployed application,

between edge Cloud and core Cloud. Finally, in Section 5 concludes our thesis with

definite results and conclusion.

 4

Chapter 2

Background and Literature Review

2.1 Internet of Things (IoT)

Internet of Things (IoT) means network of things, physical devices. It is a novel paradigm

that is rapidly gaining ground in the scenario of modern technology. It provides the

ability to transfer data over a network without iterating human to human or human to

computer and works via objects or devices. In IoT, data comes in via devices or things.

These could be sensors, mobile phone, electronic devices, vehicles, watch, air

conditioner, car, camera and various other ‘things’ - which, through unique addressing

schemes, are able to interact with each other and cooperate with their neighbors to reach

common goals [5].

Internet of Things (IoT), the term was first introduced in 1999 for supply chain

management [6], and then the concept of “making a computer sense information without

the aid of human intervention” was widely adapted to other fields such as healthcare,

home, security, environment, and transports [7], [8].

In future various information and things will be connected to network and we expect it

will be. People can live more convenient and comfortable lives with everyday things and

their information coordinated together. Various information and things are inter-

connected to a network is referred to as the IoT.

It should not be surprising that IoT is included by the US National Intelligence Council in

the list of six ‘‘Disruptive Civil Technologies” with potential impacts on US national

power. NIC predicts that ‘‘by 2025 Internet nodes may reside in everyday things – food

packages, furniture, paper documents, and more”. It highlights future opportunities that

will arise, starting from the idea that ‘‘popular demand combined with technology

advances could drive widespread diffusion of an Internet of Things (IoT) that could, like

the present Internet, contribute invaluably to economic development” [5].

 5

2.2 Cloud Computing

Cloud computing is a paradigm shift that provides computing over the Internet. It consists

of highly optimized virtual data centers that provide various hardware, software and

information resources for use when needed. Organization can simply connect to the

Cloud, use the available resources on a pay per use basis from in Cloud.

It gives consumer ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

provider-consumer interaction. [9] This Cloud model is composed of -

Five essential characteristics: On-demand self-service, Broad network, Resource pooling,

Rapid elasticity and Measured service.

Three service models: Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS).

And four deployment models: Private Cloud, Community Cloud, Public Cloud and

Hybrid Cloud.

Figure 2: Architecture of Cloud Computing

(https://www.fool.com/knowledge-center/what-is-Cloud-computing.aspx)

 6

However, a related term “grid computing,” from the high-performance computing

community, suggests protocols to offer shared computation and storage over long

distances, but those protocols did not lead to a software environment that grew beyond its

community [10].

Up till this year, there are various popular Cloud vendors such as AWS (Amazon Web

Service), Microsoft Azure, Google Cloud Platform, Salesforce etc., which provides

various service and virtual resources on pay per use terms.

2.3 Edge Computing

Edge computing refers to the enabling technologies allowing computation to be

performed at the edge of the network, on downstream data on behalf of Cloud services

and upstream data on behalf of IoT services. Here we define “edge” as any computing

and network resources along the path between data sources and core Cloud data centers

or core clouds [11].

We named Cloud in edge network as Edge Cloud. The detailed implementation of the

edge Cloud is beyond the scope of this thesis. Figure 3 shows different stacks of services

of the Edge Cloud [2].

Figure 3: Inside the Edge Cloud [2]

 7

Data is increasingly produced near the edge of the network, therefore, it would be more

efficient to also process the data at the edge of the network. Previous work such as micro

datacenter [12], [13], cloudlet [14], and fog computing [15] has been introduced because

Cloud computing is not always efficient for data processing when the data is produced far

from it, in the edge of the network.

2.3.1 Edge Computing over Cloud Computing on IoT

Transferring all data to a Cloud for computing has been an efficient way to process data

because there’s more computing resource in the Cloud than in the devices at the network

edge or IoT enabled devices. However, although data-processing speeds have risen

rapidly, the bandwidth of the networks that carry data to and from the Cloud has not

increased appreciably. Thus, with edge devices generating more data, taking more

network hops, the network is becoming Cloud computing’s bottleneck.

Let us consider an autonomous vehicle as example of this scenario. One Gigabyte data

will be generated by the car every second and it requires real-time processing for the

Figure 4: Edge Computing Paradigm

(IEEE INTERNET OF THINGS JOURNAL, VOL. 3, No. 5, October 2016)

 8

vehicle to make correct decisions [16]. If all the data is sent to the Cloud for processing,

the response time would be too long. Not to mention that current network bandwidth and

reliability would be challenged for its supporting a large number of vehicles within one

area.

Almost all kinds of electrical devices will become part of IoT, and they will play the role

of data producers as well as consumers, such as air quality sensors, LED bars, streetlights

and even an Internet-connected microwave oven. It is safe to infer that the number of

things at the edge of the network will develop to more than billions in a few years. Thus,

raw data produced by them will be enormous, making conventional Cloud computing not

efficient enough to handle all these data. This means most of the data produced by IoT

will never be transmitted to the Cloud, instead it will be consumed at the edge of the

network.

To demonstrate edge Cloud over core Cloud, various research and study can be

discussed.

Specially for multimedia application, results show huge difference in performance, based

on network parameters. Several case studies, ranging from Cloud offloading to smart

home and city, as well as collaborative edge to materialize the concept of edge computing

is studied and several challenges and opportunities in the field of edge computing has

been presented to gain attention on researching more on edge computing over Cloud

computing [11].

Salekul Islam and Jean-Charles Grégoire have proposed a study of deploying a prototype

that transcodes audio/video stream inside edge Cloud and core Cloud to monitor

performance of the prototype by analyzing the inter-arrival jitter [17]. With their SaaS

model offers a new role for the ISP—or an extension of his role as CDN provider, as well

as an extended contract with the user which can go to guaranteed performance and

support for mobility, rather than using commercial Cloud vendors.

Nasif et al. [4] have proposed to transfer the face recognition computation from the

smartphone to the edge Cloud to get faster results using a server’s powerful processing

capability and big storage facility. And monitor differences regarding performance with

smartphone. This application can identify faces from an image and then compare the

 9

uploaded face with these extracted faces. The experimental results demonstrate that face

recognition is performed comprehensively faster at the edge Cloud than on the

smartphone. To extend the study and demonstrate the proposition of edge Cloud over

core Cloud, this application can be extended to perform more efficiently as for IoT use

case and measure network parameter differences between edge Cloud and core Cloud.

 10

Chapter 3

Real Time Face Recognition

In our thesis, we have constructed an IoT infrastructure with a raspberry pi as client

device, a middleware and deployed the computational process in both edge Cloud (United

International University Data Center) and core Cloud (Microsoft Azure).

The main component of our system, as we need a huge computational cost to review and

continuous data to run around, is a real time face recognition system from IP camera used

in the facility.

3.1 Face Recognition

Face Recognition is a system where given a picture or frame of person’s face, the

application recognizes the identity of that person, computing data from multiple known

face data. In general face recognition is a service consisting two different computational

process: face detection and recognition. In our developed system, in the face detection

phase, human face or faces are detected from video frame fetched from IP camera’s video

feed. Then the captured face is embedded into a feature vector via trained neural network

model. In the recognition phase, using that feature vector, computing through a machine

learning algorithm and classification from a trained model of face dataset identification of

that face is acknowledged. Point to note, no motion detection or converting images to

grayscale is done.

3.1.1 Detection and feature extraction

An overview of the detection process is shown in the figure 5. Basically, the process in

Raspberry Pi catches every frame from connected camera and detect human faces from it

using Histograms of Oriented Gradients (HOG) model (a unified model for face

detection, pose estimation, and landmark estimation in real-world, cluttered images [18])

 11

Figure 5: Histograms of Oriented Gradients (HOG) to detect face

(https://medium.com/@ageitgey)

Firstly, each face is detected in the frame. Then from each face frame, we get an array of

128 floating numbers (implemented with dlib, pre-trained CNN model -

resnet_model_v1, ResNet by Kaiming He), which is called face encoding from that

captured face frame, using standard techniques as FaceNet embedding as feature vectors.

It actually achieves state-of-the-art face recognition performance using only 128 floating

number per face. Widely used Labeled Faces in the Wild (LFW) dataset, this system

achieves accuracy of 99.38%. [19] On YouTube Faces DB it achieves 95.12%. A slight

abstraction of this feature extraction is shown in figure 4. A sample face encoding is

enlisted in the appendix section in our sample face data.

 12

Figure 6: Generating face encodings from facial image

(https://hackernoon.com)

In most studies and development, video feed is fitted with a motion detection system, and

whenever something moves in the frame, it takes a snap of the frame and send that frame

to recognition face, where it detects human face. We proposed that, every frame will go

through processing and whenever there is a human face, it will only capture the frame of

that face rather than capturing the whole frame. Then, from that face frame, feature vector

is acquired. This part is done in the client side of the architecture. The feature vector

wrapped in a json structure, sizes only 3.9kb per face, is a feasible data to send to server,

compared to large image data depending on resolution and full frame size of camera. A

sample of the face data is included in the appendix section.

3.1.2 Recognition

The face encoding is used to classify with our pre-trained knn model of face encodings

from face dataset and get user’s identity, the primary key (ID, name) of that person’s data

in the database. We have used knn for classifying data, as it is a simple approach based

on feature’s distance evaluation [20] and classifies with good accuracy. With that primary

key, recognized person’s credential is fetched. The result then is then saved with that

timestamp, location-in-frame, and camera id in database as a log, and also sent to the

client node (Pi) as a notification wrapped in a json string.

 13

This part is done in the server side. We have used 1000 numbers of human face from

UTK face dataset [21] as our test dataset. The computational time on the server side

depends on the size of the dataset.

3.2 Generic Architecture

Here is a flowchart (figure 6) demonstrating our IoT application’s architecture. Where in

the client side, each and every frame is captured. If there is one or multiple face in the

frame, it is computed into separated face data (face encodings, location of the face in

frame, timestamp) for each face. Then the data is sent to the recognition application in the

server side of the architecture, both in core Cloud and edge Cloud, via the middleware.

After recognition, the results are sent, also via the middleware to the client side.

Figure 6: Flowchart of proposed architecture of Face Recognition System in IoT

Capture
Frame

Face
Detection

Face
Data

Log

Notification

Face
Dataset

Opertaion Server

Middleware

Client

kaa

kaa

Result

 14

Identity

Notification

Data Storage
Recognition

Log

O
pertaio

n Server
M

id
dlew

are
C

lien
t

Face
Detection

Receive
Frame

Face Encodings Notification

Result

Figure 7: Architecture of Face Recognition System in IoT

 15

3.3 Implementation

Our real time face detection with IP camera has four different modules/components.

These components together make the system work.

1. IP camera: An Internet Protocol camera, or IP camera, is a type of digital video

camera commonly employed for surveillance, and it is used send and receive data

via a computer network and the Internet. Although most cameras that do this are

webcams, the term IP camera is usually applied only to those used for surveillance

that can be directly accessed over a network connection.

To develop the real-time face recognition with IP camera, we used Dahua HD

Mini IR Bullet Camera. It is a 5 MP Pro Series camera that offers high-resolution

video. We attached it with client hardware (raspberry pi/laptop).

2. Client hardware: A client is a computer or a program that, as part of its operation,

relies on sending a request to another program or a computer hardware or

software that accesses a service made available by a server (which may or may

not be located on another computer).

We have used both laptop and raspberry pi 3 model B as client to evaluate

performance of different scenarios. Configuration of client:

Table 1: Configuration of hardwires used

 Raspberry pi Laptop

OS Rasbian (linux) Ubuntu (linux)

RAM 1 GB 8 GB

Processing speed 1.2 GHz 2.4 GHz

Number of CPU 4 4

 16

3. Middleware: The middleware is a software layer or a set of sub-layers set between

the technological and the application levels. Its feature of hiding the details of

different technologies, setting the complexity of transportation through network

protocols hidden in an API, for the development of the specific application

enabled by the IoT infrastructures.

For implementing an IoT scenario, we have used Kaa IoT Platform [22], an

enterprise IoT middleware (PaaS). All the IoT protocols, regulations and security

measurement is ensured with this service. In our development process, we have

used the open source version of Kaa platform running on a ubuntu virtual machine

in server. In Kaa, we created an application with administration and developer

credentials that receives face data of a dedicated format. No other garbage data

can pass through the middleware. To transfer data to Kaa, dedicated SDK had to

be used, which is implemented by the very installed middleware.

Figure 7: Middleware Kaa

So, the program running in Raspberry Pi is designed with that SDK and an

operational data transfer module. The result notification is also received via that

SDK and an operational notification receiver module.

 17

4. Operation Server: In computing, a server is a computer program or a device that

provides functionality for other programs or devices, called "clients". This

architecture is called the client–server model, and a single overall computation is

distributed across multiple processes or devices. Servers can provide various

functionalities, often called "services", such as sharing data or resources among

multiple clients, or performing computation for a client. A single server can serve

multiple clients, and a single client can use multiple servers.

We took a VM with 64 bit Ubuntu 14.04 and 8 GB RAM as edge server in our

local network. For Cloud server, we chose Microsoft Azure’s Standard B2ms (2

vcpus, 8 GB memory) Ubuntu VM.

 18

3.4 Development

In our development process, firstly, we deployed middleware kaa, both in edge Cloud and

core Cloud to demonstrate an IoT framework, which gives us a web server, maintains

security issues and transport protocols for both clouds.

3.4.1 Configuring IoT middleware platform, Kaa

As mentioned earlier, we are using Kaa IoT platform as middleware. First we set up kaa

environment in server. The pre-requisite for setting up a kaa environment are:

1. Ubuntu or Debian system

2. 64 bit OS

3. 8 GB RAM

4. Oracle JDK 8

5. PostgreSQL 9.4

6. MariaDB 5.5

7. MongoDB

8. Zookeeper 3.4.5

First of all, we set up environment and install all the pre-requisites that are listed above.

After that we downloaded the community addition pre-built packages of kaa from the

official website and installed it. Finally, we configured the network interface for the

operations and Bootstrap services by specifying a host name and ip address that will be

visible to the devices. We did the same thing in Edge Cloud and Core Cloud. This is how

we had kaa server up and running.

Then we added a tenant developer under tenant admin. Tenant admin can add application

and developer can configure the application as per requirement. We added an application

named “face recognition”. With kaa and client side SDK, device can be configured for

important parameters such as sample period of uploading logs, what data types and how

those will be transferred by creating application common type library, from the deployed

kaa webserver. We configured sampling period and types of data to be received with one

configuration scheme, a data collection scheme and a notification scheme. The 3 schemas

 19

are mentioned below in the appendix section in json format. With these schemas, kaa

webserver provides generic control over connected devices.

We are using a backend application to analyze the data so we used the “Rest Log

Appender” feature that sends the data to particular host via RESTful call. In our case, we

are using the same server for analysis. So we set the host to be localhost with the port

9000.

After configuration, we can download kaa SDK. We have used java to implement data

transfer using kaa’s java SDK.

3.4.2 Client side application

As client, we used Raspberry pi and laptop with IP camera. We used linux environment

to develop client applications. To set up client environment we installed Oracle JDK 8,

openCV [23], dlib[24] and face_recognition[25] for python. Client side

application is a combination of 3 different modules running in parallel.

1. Detection and Encode Module: It detects face using HOG model from the video

stream of ip camera. It also encodes the face into 128 floating point feature vector

and saves it to a json file, along with timestamp, camera id and location of the

face in the frame. It is implemented with python. Opens source libraries like

openCV, dlib, face_recognition are used in this process. This is the

feature extraction phase. The json file sizes 3.9kb per face regardless the size of

image or frame or resolution. Of course better resolution would increase the

accuracy of recognition.

By doing this pre-processing of data at this side of the network, we are basically

reducing the size of data to be transmitted. Transportation is becoming the

bottleneck of Cloud based computing system. So, by reducing the size of data to

be sent, we can save bandwidth. Less bandwidth and less data means faster and

efficient transportation. The data to be sent to server is in json format. A sample

data is attached in the appendix section.

 20

Figure 8: Flow diagram of Detection and Encode Module

2. Data Transfer Module: It follows the java program architecture defined by kaa. It

uses the kaa SDK to send data from client to kaa server. It sends the face encoding

data as string saved in the json file and a timestamp as long data type. Data upload

sampling period is defined from configuration schema. For logging data to kaa,

we used open source java library Simple Logging Façade for Java (slf4j) [26]. It

serves as an abstraction for various logging frameworks.

Face Data If valid SDK Middleware

Figure 9: Flow diagram of Data Transfer Module

3. Notification Module: This java program catches the notification sent from the

server. It is also compiled with kaa SDK. It is programmed to calculate the client

processing time, client to server latency, prediction time, server to client latency

and total time.

Message SDK NotificationMiddleware

Figure 10: Flow diagram of Notification Module

Capture
Frame

Capture face
frame

If face
found

Generate
Face

Encoding
Face DataCNN

Normalize
Face Landmarks

 21

3.4.3 Server side application

The application is developed in python. It uses python machine learning framework

scikit-learn [27] for classifying face from face data model. First it trains a knn model

using dataset of 1000 pictures. We have set the distance threshold to 6 for the classifier to

classify accurately. It listens to a particular port for collecting data sent by kaa. Then it

uses the knn model to predict the class label of the collected data, creates a notification

text in json format and sends a notification to kaa using REST API. Then kaa sends the

notification to client device. We attached the schema of the notification.json in the

appendix section.

Figure 11: Flow diagram of server side application

Middleware

Operation
Application

Face Data

Face Dataset
Machine
Learning
Model

Classification If recognized Message Middleware End Device

 22

Chapter 4

Results and Analysis

As detailed in development section, we have used Raspberry Pi 3 as our client IoT

enabled device. We also took a survey running the client side application in a pc.

The following graph (figure 12) shows the time difference between raspberry pi 3 and pc

for pre-processing the face image and feature extraction from IP camera connected and

iterating ten times. Average time of this process is given in table 2.

Figure 12: Feature extraction time difference in raspberry pi and pc

This graph of time signature fluctuates on basis of application’s memory and processor’s

usage in the device. The time figure rises when there it finds multiple faces in one frame

and has to separately compute them.

Table 2: Average time of feature extraction

Device Time (ms)

pi 13.2

pc 3.2

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1 0

ti
m

e
in

 m
s

ITERATION

FEATURE EXTRACTION TIME
(PI VS PC)

pi pc

 23

For the same iterations, client to server (figure 10) and server to client (figure 11)

network latency is monitored. This graph differentiates edge Cloud and core Cloud, in

terms of time a json data transfer. Table 3 and table 4 correspondingly gives the average

network latency for both direction.

Figure 13: Network latency for edge Cloud and core Cloud (Client to Server)

Table 3: Average network latency for edge Cloud and core Cloud (Client to Server)

Server Time in ms

Edge Cloud 520

Core Cloud 2393

Figure 14: Network latency for notification (Server to Client)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

ti
m

e
in

 m
s

iteration

Network Latency
edge Cloud vs core Cloud

edge cloud core cloud

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

ti
m

e
in

 m
s

iteration

Network latency
(server to client)

edge cloud core cloud

 24

Table 4: Average network latency for notification (Server to Client)

Server Time in ms

Edge Cloud 160

Core Cloud 260

These graphs fluctuate according to the usage of the edge network usage in the facility.

In to the server side application, classification time is measured both in edge server and

Cloud server, between 1000 faces (table 5).

Table 5: Classification time in server (Dataset – 1000 face image)

Server Time (ms)

Edge Cloud 40

Core Cloud 33

Between the differentiation of edge and core Cloud, the whole face recognition process

takes ~600ms in edge server and ~3000ms in Cloud server, regarding our facility’s

Internet connection.

By looking at the overall performance of our developed system, response time in edge

Cloud give less response time than core Cloud. In our thesis, we can say that, in case of

IoT, keeping all the other study issues such as security, data storage and scalability issues

aside, edge computing suits better than Cloud computing.

For extraction on more performance measure, figure 15 shows the time the server

application in our edge Cloud facility takes to classify face for different size of dataset.

We took 1000 face images for our initial testing. Furthermore, the results below are

shown based on 2000, 3000, 4000 and 5000 face images in face dataset model. Table 6

gives the average time of the process for these different datasets.

 25

Figure 15: Classification time for different scale of dataset

Table 6: Average classification time for different size of dataset

Number of faces in dataset Time in ms

2000 66

3000 106

4000 138

5000 194

All the machine learning and classification is done using python’s scikit-learn library.

Table 7 shows the difference in processing time of our whole face recognition system

using edge Cloud and core Cloud using raspberry pi as client device.

Table 7: Average total time of Face Recognition process

Server Time (ms)

Edge Cloud 733

Core Cloud 2700

We can see that, the deployed process in core Cloud shows nearly 4 times processing

time compared to edge Cloud.

All the network data are collected using university facility Internet connection.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 1 0

ti
m

e
in

 m
s

iteration

 Comparison of
classification time for big dataset

2000 image 3000 image 4000 image 5000 image

 26

Chapter 5

Conclusion

The main contribution of this thesis are:

1) Design and develop a real-time face-recognition system by integrating IoT platform

and Cloud computing by using open-source tools and libraries.

2) Monitor and analyze the network and hardware performance of the system.

3) Compare the performance between edge Cloud and core Cloud for this IoT

application.

In edge computing we want to put the computing at the proximity of data sources. This

have several benefits compared to traditional Cloud-based computing paradigm. Here, we

can see that, we can reduce network client to server network latency by ~73% (2700ms

to700ms), regarding our facilities Internet connection, by positioning the server into an

edge Cloud rather than core Cloud (MS Azure). Also implementing feature extraction

process in client side application reduces the size of the data to be transferred, thus,

taking low bandwidth allocation. Referring to our research, we can say commercial Cloud

platforms are not well suited for IoT, which leads to the emergence of edge computing for

better performance.

 27

References

[1] Bound, J and Perkins, CE, “Evolution of the Internet core and edge: Ip wireless

networking”, Proceedings of USENIX Annual Technical Conference, Boston,

MA, USA, 2001.

[2] S. Islam and J.-Ch. Grégoire, “Network Edge Intelligence for the Emerging Next-

Generation Internet,” Future Internet, vol. 2, no. 4, pp. 603–623, 2010.

[3] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the Cloud to the

edge,” in Proc. IEEE Conf. on Computer Communications Workshops

(INFOCOM WKSHPS), Toronto, ON, Canada, May 2014.

[4] N. Muslim and S. Islam, “Face recognition in the Edge Cloud,” Proc. Int. Conf.

Imaging, Signal Process. Commun. - ICISPC 2017, pp. 5–9, 2017.

[5] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput.

Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] K. Ashton, “That Internet of Things thing,” RFiD J., vol. 22, no. 7, pp. 97–114,

2009.

[7] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, “Vision and challenges for

realising the Internet of Things,” Cluster of European Research Projects on the

Internet of Things—CERP IoT, 2010.

[8] J. Gubbi, R. Buyya, M. Palaniswami, and S. Marusic, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Futur. Gener. Comput. Syst.,

vol. 29, no. 7, pp. 1645--1660, 2013.

[9] P. Mell and T. Grance, “Draft NIST working definition of Cloud computing,”

Referenced on June. 3rd, 2009 Online at http://csrc.nist.gov/groups/SNS/Cloud-

computing/index.html, 2009.

[10] M. Armbrust et al., “A view of Cloud computing,” Commun. ACM, vol. 53, no. 4,

pp. 50–58, 2010.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and

Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016.

[12] A. Greenberg et al., “The Cost of a Cloud: Research Problems in Data Center

Networks,” ACM SIGCOMM Computer Commun. Review, vol. 39, no. 1, pp.

68–73, Jan. 2009.

[13] E. Cuervo et al., “MAUI: Making Smartphones Last Longer with Code Offload,”

Proc. 8th ACM MobiSys, 2010.

 28

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based

cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–

23, Oct./Dec. 2009

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

Internet of things,” in workshop on Mobile Cloud computing. ACM, 2012.

[16] V. Rijmenam, M., “Self-driving cars will create 2 petabytes of data, what are the

big data opportunities for the car industry,” 2017.

[17] S. Islam and J.-Ch. Grégoire, “Giving users an edge: A flexible Cloud model and

its application for multimedia,” Future Generation Computer System, vol. 28, no.

6, pp. 823–832, 2012.

[18] X. Zhu and D. Ramanan, “Face Detection, Pose Estimation, and Landmark

Localization in the Wild,” Comput. Vis. Pattern Recognit. (CVPR), 2012 IEEE

Conf., pp. 2879–2886, 2012.

[19] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” In Proc. CVPR, 2015.

[20] J. Stallkamp, H. K. Ekenel, R. Stiefelhagen, “Video-based Face Recognition on

Real-World Data,” ICCV, 2007.

[21] Zhang, Zhifei, Song, Yang, and Qi, Hairong, “Age Progression/Regression by

Conditional Adversarial Autoencoder”, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.

 [22] Kaa iot platform. https://www.kaaproject.org

[23] G. Bradski, “The OpenCV Library,” Dr. Dobb's Journal of Software Tools, 2000.

[24] King D. E., “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine

Learning Research, vol. 10, pp. 1755-1758, 2009.

[25] Open source face recognition library for python.

https://github.com/ageitgey/face_recognition

[26] Simple Logging Facade for Java (SLF4J), java logging api. https://www.slf4j.org

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, “Scikit-learn: Machine

Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-

2830, 2011.

 29

Appendix A

Kaa Scheamas

1. Configuration schema: this defines the default sampling period of data upload

from device.

{

"type":"record",

"name":"Configuration",

"namespace":"org.kaaproject.kaa.schema.sample",

"fields":[{

"name":"samplePeriod",

"type":"int","by_default":1

},

{

"name":"__uuid",

"type":[{

"type":"fixed",

"name":"uuidT",

"namespace":"org.kaaproject.configuration",

"size":16

},

"null"],

"displayName":"Record Id","fieldAccess":"read_only"

}

],

"version":1,

"displayName":"Configuration"

}

With the configuration schema, end device’s sample period can be generically

configured from kaa webserver. To identify end device multiple client, uuid is

fetched.

 30

2. Data collection schema: this defines the structure of the data to be received.

{

 "type" : "record",

 "name" : "TDataCollection",

 "namespace" : "org.kaaproject.kaa.schema.sample",

 "fields" : [{

 "name" : "face",

 "type" : {

 "type" : "string",

 "avro.java.string" : "String"

 }

 }, {

 "name" : "timeStamp",

 "type" : "long"

 }],

 "version" : 1,

 "dependencies" : [],

 "displayName" : "TDataCollection"

}

This schema defines the data type of logging collected data from device, which

are, ‘face’ which consists json structured data with face encoding, timestamp and

location in the frame, and timestamp – the timestamp of data upload from device.

3. Notification schema: this defines the structure of the notification to be sent from

kaa.

{

 "type" : "record",

 "name" : "Notification",

 "namespace" : "org.kaaproject.kaa.schema.example",

 "fields" : [{

 "name" : "message",

 "type" : {

 "type" : "string",

 "avro.java.string" : "String"

 }

 }],

 "version" : 1,

 "dependencies" : []

}

Notification to be sent after recognition phase, which is named ‘message’ and data

type string.

 31

Sample Face Data

Face data in json structure, generated from client side application with 128d face

encoding.

{

 "timestamp":"2018-09-12 22:28:04.854874",

 "face_encoding":[

 -0.03991749510169029,

 0.10491644591093063,

 0.0908227413892746,

 -0.008847326040267944,

 -0.07960712909698486,

 -0.042521778494119644,

 -0.053688082844018936,

 0.00014458224177360535,

 0.12723200023174286,

 -0.03247608616948128,

 0.23210051655769348,

 -0.014697907492518425,

 -0.2446957230567932,

 -0.028651222586631775,

 -0.003507627174258232,

 0.09977242350578308,

 -0.14234806597232819,

 -0.06628001481294632,

 -0.1056591123342514,

 -0.1179349422454834,

 0.044296085834503174,

 0.011001733131706715,

 0.0131568294018507,

 0.005964099895209074,

 -0.09541729837656021,

 -0.2940107583999634,

 -0.07901164889335632,

 -0.12461303174495697,

 0.0903143510222435,

 -0.18279217183589935,

 0.010395172983407974,

 0.02964000217616558,

 -0.11968293786048889,

 -0.03763097897171974,

 -0.018499260768294334,

 0.02241109125316143,

 0.006105402484536171,

 -0.09956780076026917,

 0.15293844044208527,

 -0.03480614721775055,

 32

 -0.151466965675354,

 -0.056745123118162155,

 0.0028462838381528854,

 0.2556203007698059,

 0.18022345006465912,

 0.04067671298980713,

 0.019054628908634186,

 -0.053532302379608154,

 0.059580810368061066,

 -0.2805930972099304,

 0.027582716196775436,

 0.1558370143175125,

 0.01873459480702877,

 0.11697729676961899,

 0.07859192043542862,

 -0.1667841076850891,

 0.04074300825595856,

 0.09162883460521698,

 -0.1402018666267395,

 0.0398016981780529,

 0.05118858441710472,

 -0.09438028186559677,

 -0.0348590612411499,

 -0.11478354781866074,

 0.21047230064868927,

 0.06895994395017624,

 -0.08207542449235916,

 -0.12454008311033249,

 0.11185845732688904,

 -0.1558324247598648,

 -0.036294132471084595,

 0.10316243767738342,

 -0.11435894668102264,

 -0.16498178243637085,

 -0.22588521242141724,

 0.09368528425693512,

 0.36699917912483215,

 0.19930100440979004,

 -0.13919590413570404,

 0.03991914913058281,

 -0.1053084135055542,

 -0.014978972263634205,

 0.04010719433426857,

 0.022071311250329018,

 -0.06790884584188461,

 0.0029971925541758537,

 -0.09384240210056305,

 0.0677608773112297,

 0.1655023992061615,

 -0.08613958954811096,

 33

 0.03404010087251663,

 0.1837223768234253,

 -0.046676866710186005,

 0.03188410773873329,

 -0.001710508018732071,

 0.018096420913934708,

 -0.08234531432390213,

 0.050373777747154236,

 -0.06457515805959702,

 0.019401784986257553,

 0.13476905226707458,

 -0.13644984364509583,

 0.029162578284740448,

 0.06979145109653473,

 -0.17401345074176788,

 0.09501060843467712,

 -0.012585272081196308,

 -0.031326793134212494,

 0.043887048959732056,

 0.005560955032706261,

 -0.07175079733133316,

 -0.03547824174165726,

 0.2355225831270218,

 -0.25204572081565857,

 0.23794953525066376,

 0.24037323892116547,

 0.038678523153066635,

 0.13249173760414124,

 0.038171716034412384,

 0.1466071605682373,

 -0.044453300535678864,

 -0.06796195358037949,

 -0.1310708373785019,

 -0.027809495106339455,

 0.020307786762714386,

 -0.013669928535819054,

 -0.054414622485637665,

 -0.000889856368303299

],

 "location_in_frame":"[3676L, 2108L, 4960L, 3392L]"

}

 34

Programming Code

Client Side Application

detection_encode.py

Note: This program requires some packages to be installed:

 openCV for python, scikit-learn dlib, face_recognition

Source code:

#AsifAhmed011141068

import face_recognition

import cv2

import datetime

import numpy as np

import json

import threading

Get a reference to webcam #0 (the default one)

#webcam

#video_capture = cv2.VideoCapture(0)

#ipcam

video_capture =

cv2.VideoCapture('rtsp://admin:admin123@10.10.5.117:554/cam/realmonitor?channel=1

&subtype=0')

def make_480p():

 video_capture.set(3, 640)

 video_capture.set(4, 480)

def change_res(width, height):

 video_capture.set(3, width)

 video_capture.set(4, height)

def face_encode_gen(face_locations):

 print (" thread start")

 if len(face_locations) !=0:

 face_encoding = []

 face_encoding = face_recognition.face_encodings(rgb_small_frame, face_locations)

 for top, right, bottom, left in face_locations:

 35

 # Scale back up face locations since the frame we detected in was scaled to 1/4 size

and add paddding 15px

 location_in_frame = []

 top *= 4

 right *= 4

 bottom *= 4

 left *= 4

 location_in_frame = [left, top, right, bottom]

 face_encoding = np.array(face_encoding)

 face_encoding = face_encoding.tolist()

 face_data = {

 "timestamp" : str(timestamp),

 "location_in_frame" : str(location_in_frame),

 "face_encoding" : face_encoding[0]

 }

 #-----------------save json file for java to fetch-------------------------#

 with open("test/face_"+ timestamp +"_data.json", 'w') as outfile:

json.dump(face_data, outfile, encoding='utf-8', separators=(',', ':'),

sort_keys=False, indent=4)

 print(" - created - : " + "face_" + timestamp +"_data.json")

 #--#

make_480p()

process_this_frame = True

fps = 1

video_capture.set(cv2.CAP_PROP_FPS, fps)

while True:

 # Grab a single frame of video

 ret, frame = video_capture.read()

 # Resize frame of video to 1/4 size for faster face recognition processing

 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

 #half_frame = cv2.resize(frame, (0, 0), fx=0.8, fy=0.8)

 # Convert the image from BGR color (which OpenCV uses) to RGB color (which

face_recognition uses)

 rgb_small_frame = small_frame[:, :, ::-1]

 36

 # Only process every other frame of video to save time

 if process_this_frame:

 timestamp = str(datetime.datetime.now())

 face_locations = face_recognition.face_locations(rgb_small_frame)

 #print(face_locations)

 try:

 if len(face_locations) !=0:

 threading.Thread(target=face_encode_gen, args = (face_locations,)).start()

 else:

 print("no face")

 except:

 print("q")

 process_this_frame = not process_this_frame

 #Display the resulting image

 #cv2.imshow('Video', small_frame)

 # Hit 'q' on the keyboard to quit

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

Release handle to the webcam

video_capture.release()

cv2.destroyAllWindows()

 37

DataTransfer.java

Note: To run this application, build the source code with dedicated Kaa SDK and

slf4j.jar.

Source code:

//AsifAhmed011141068

import org.kaaproject.kaa.client.DesktopKaaPlatformContext;

import org.kaaproject.kaa.client.Kaa;

import org.kaaproject.kaa.client.KaaClient;

import org.kaaproject.kaa.client.SimpleKaaClientStateListener;

import org.kaaproject.kaa.client.configuration.base.ConfigurationListener;

import org.kaaproject.kaa.client.configuration.base.SimpleConfigurationStorage;

import org.kaaproject.kaa.client.logging.strategies.RecordCountLogUploadStrategy;

import org.kaaproject.kaa.schema.sample.Configuration;

import org.kaaproject.kaa.schema.sample.TDataCollection;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.IOException;

import java.util.Random;

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.ScheduledFuture;

import java.util.concurrent.TimeUnit;

import java.nio.file.FileSystems;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardWatchEventKinds;

import java.nio.file.WatchEvent;

import java.nio.file.WatchKey;

import java.nio.file.WatchService;

import java.nio.file.Files;

import java.io.*;

import java.nio.*;

/**

 * Class implement functionality for First Kaa application. Application send face

encodings data

 * from the Kaa endpoint with required configured sampling period

 */

public class DataTransfer {

 private static final long DEFAULT_START_DELAY = 1000L;

 private static final Logger LOG = LoggerFactory.getLogger(FirstKaaDemo.class);

 private static KaaClient kaaClient;

 38

 private static ScheduledFuture<?> scheduledFuture;

 private static ScheduledExecutorService scheduledExecutorService;

 public static long startTime;

 public static long endTime;

 public static int flag=1;

 public static void main(String[] args) {

 LOG.info(FirstKaaDemo.class.getSimpleName() + " app starting!");

 scheduledExecutorService = Executors.newScheduledThreadPool(2);

 //Create the Kaa desktop context for the application.

 DesktopKaaPlatformContext desktopKaaPlatformContext = new

DesktopKaaPlatformContext();

 /*

 * Create a Kaa client and add a listener which displays the Kaa client

 * configuration as soon as the Kaa client is started.

 */

 kaaClient = Kaa.newClient(desktopKaaPlatformContext, new

FirstKaaClientStateListener(), true);

 /*

 * Used by log collector on each adding of the new log record in order to check

whether to send logs to server.

 * Start log upload when there is at least one record in storage.

 */

 RecordCountLogUploadStrategy strategy = new

RecordCountLogUploadStrategy(1);

 strategy.setMaxParallelUploads(1);

 kaaClient.setLogUploadStrategy(strategy);

 /*

 * Persist configuration in a local storage to avoid downloading it each

 * time the Kaa client is started.

 */

 kaaClient.setConfigurationStorage(new

SimpleConfigurationStorage(desktopKaaPlatformContext, "saved_config.cfg"));

 kaaClient.addConfigurationListener(new ConfigurationListener() {

 @Override

 public void onConfigurationUpdate(Configuration configuration) {

 LOG.info("Received configuration data. New sample period: {}",

configuration.getSamplePeriod());

onChangedConfiguration(TimeUnit.SECONDS.toMillis(configuration.getSamplePeriod(

)));

 }

 39

 });

 //Start the Kaa client and connect it to the Kaa server.

 kaaClient.start();

 LOG.info("--= Press any key to exit =--");

 try {

 System.in.read();

 } catch (IOException e) {

 LOG.error("IOException has occurred: {}", e.getMessage());

 }

 LOG.info("Stopping...");

 scheduledExecutorService.shutdown();

 kaaClient.stop();

 }

 /*--*/

 // reads whole json file as a string

 private static String readEncodings(String path) throws Exception{

 String data = "";

 //data = new String(Files.readAllBytes(Paths.get(path)));

 data = new String(Files.readAllBytes(Paths.get(path)));

 for(int i=0; i<5;i++)

 {

 LOG.info("-");

 }

 System.out.println("Data to send : " + path);

 for(int i=0; i<5;i++)

 {

 LOG.info("-");

 }

 return data;

 }

 // gets just created face_ json file

 private static String getEncodings() throws Exception{

 Path testFolder = Paths.get("test");

 WatchService watchService =

FileSystems.getDefault().newWatchService();

 testFolder.register(watchService,

StandardWatchEventKinds.ENTRY_CREATE);

 boolean valid = true;

 do {

 WatchKey watchKey = watchService.take();

 40

 for (WatchEvent event : watchKey.pollEvents()) {

 WatchEvent.Kind kind = event.kind();

 if

(StandardWatchEventKinds.ENTRY_CREATE.equals(event.kind())) {

 // reads only when a json file is created

 try{

 String fileName = event.context().toString();

 if(fileName.endsWith("_data.json") && fileName.startsWith("face_")){

 for(int i=0; i<5;i++)

 {

 LOG.info("-");

 }

 System.out.println("Captured:" + fileName);

 for(int i=0; i<5;i++)

 {

 LOG.info("-");

 }

 return readEncodings("test/"+fileName); // sends created file path

and returns json formatted string

 }

 } catch(Exception e){

 System.out.println("error");

 }

 }

 }

 valid = watchKey.reset();

 } while (valid);

 return ("");

 }

 private static void onKaaStarted(long time) {

 if (time <= 0) {

 LOG.error("Wrong time is used. Please, check your configuration!");

 kaaClient.stop();

 System.exit(0);

 }

 scheduledFuture = scheduledExecutorService.scheduleAtFixedRate(

 new Runnable() {

 @Override

 public void run() {

 try{

 41

 String face = "";

 face = getEncodings();

 if(face != ""){

 startTime= System.currentTimeMillis();

 kaaClient.addLogRecord(new TDataCollection(face, startTime));

 LOG.info("Sampled data: {}",face);

 }

 }

 catch(Exception e)

 {

 System.out.println("error");

 }

 flag=0;

 System.out.println("-------");

 //}

 }

 }, 0, time, TimeUnit.MILLISECONDS);

 }

 private static void onChangedConfiguration(long time) {

 if (time == 0) {

 time = DEFAULT_START_DELAY;

 }

 scheduledFuture.cancel(false);

 scheduledFuture = scheduledExecutorService.scheduleAtFixedRate(

 new Runnable() {

 @Override

 public void run() {

 try{

 String face = "";

 face = getEncodings();

 if(face != ""){

 startTime= System.currentTimeMillis();

 kaaClient.addLogRecord(new TDataCollection(face, startTime));

 for(int i=0; i<5;i++)

 42

 LOG.info("Sampled Data: {}",face);

 }

 }

 catch(Exception e)

 {

 System.out.println("error");

 }

 flag=0;

 System.out.println("---0---");

 }

 //}

 }, 0, time, TimeUnit.MILLISECONDS);

 }

 private static class FirstKaaClientStateListener extends SimpleKaaClientStateListener

{

 @Override

 public void onStarted() {

 super.onStarted();

 LOG.info("Kaa client started");

 Configuration configuration = kaaClient.getConfiguration();

 LOG.info("Default sample period: {}", configuration.getSamplePeriod());

 onKaaStarted(TimeUnit.SECONDS.toMillis(configuration.getSamplePeriod()));

 }

 @Override

 public void onStopped() {

 super.onStopped();

 LOG.info("Kaa client stopped");

 }

 }

}

 43

NotificationSystem.java

Note: To run this application, build the source code with Kaa SDK and slf4j.jar

Source code:

//AsifAhmed011141068

import java.util.List;

import org.kaaproject.kaa.client.DesktopKaaPlatformContext;

import org.kaaproject.kaa.client.Kaa;

import org.kaaproject.kaa.client.KaaClient;

import org.kaaproject.kaa.client.SimpleKaaClientStateListener;

import org.kaaproject.kaa.client.notification.NotificationListener;

import org.kaaproject.kaa.client.notification.NotificationTopicListListener;

import org.kaaproject.kaa.common.endpoint.gen.Topic;

import org.kaaproject.kaa.schema.example.Notification;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.concurrent.TimeUnit;

public class NotificationSystem {

 private static final Logger LOG =

LoggerFactory.getLogger(NotificationSystemTestApp.class);

 public static void main(String[] args) {

 new NotificationSystemTestApp().launch();

 }

 private void launch() {

 // Create client for Kaa SDK

 KaaClient kaaClient = Kaa.newClient(new DesktopKaaPlatformContext(),

 new SimpleKaaClientStateListener() {

 @Override

 public void onStarted() {

 LOG.info("Kaa SDK client started!");

 }

 },true);

 // Registering listener for topic updates

 kaaClient.addTopicListListener(new NotificationTopicListListener() {

 @Override

 public void onListUpdated(List<Topic> topicList) {

 LOG.info("Topic list updated!");

 for (Topic topic : topicList) {

 LOG.info("Received topic with id {} and name {}", topic.getId(),

topic.getName());

 44

 }

 }

 });

 // Registering listener for notifications

 kaaClient.addNotificationListener(new NotificationListener() {

 @Override

 public void onNotification(long topicId, Notification notification) {

 int i;

 for(i=0; i<=5;i++)

 {

 LOG.info("--");

 }

 LOG.info("Received notification {} for topic with id {}", notification, topicId);

 long end= System.currentTimeMillis();

 String n= notification.toString();

 int len=n.length();

 i= n.indexOf("=");

 i++;

 String sub= n.substring(i,len-2);

 LOG.info("start time {}",sub);

 long start= Long.parseLong(sub);

 LOG.info("Total time required {} millis",end-start);

 for(i=0; i<=5;i++)

 {

 LOG.info("--");

 }

}

 });

 // Starts Kaa SDK client

 kaaClient.start();

 }

}

 45

Server Side Application

This application is developed using the k-nearest-neighbors (KNN) algorithm for face

recognition.

Algorithm Description:

The knn classifier is first trained on a set of labeled (known) faces and can then predict

the person in an unknown image by finding the k most similar faces (images with closest

face-features under eucledian distance, threshold = 0.6) in its training set, and performing

a majority vote (possibly weighted) on their label.

For example, if k=3, and the three closest face images to the given image in the training

set.

This implementation uses a weighted vote, such that the votes of closer-neighbors are

weighted more heavily.

Usage:

1. Prepare a set of images of the known people you want to recognize. Organize the

dataset images in a single directory with a sub-directory for each known person.

2. Then, call the 'train' function with the appropriate parameters. Make sure to pass in the

'model_save_path' if you want to save the model to disk so you can re-use the model

without having to re-train it.

3. Catches face encodings from Kaa rest log appender and classifies data. Creates a

message text and using REST api, makes middleware to send that message to client

device as a notification, via notification module.

NOTE: This program requires some packages to be installed:

install pip, scikit-learn, face_recognition

 46

Source code:

#AsifAhmed011141068

import datetime

import socket

import sys

import time as tt

import math

from sklearn import neighbors

import os

import os.path

import pickle

from PIL import Image, ImageDraw

import face_recognition

import numpy as np

from face_recognition.face_recognition_cli import image_files_in_folder

import logging as log

import json

log.basicConfig(filename='webcam.log',level=log.INFO)

ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

#cmd= "curl -v -S -u [id]:[pass] -F 'notification={\"applicationId\": \"1\", \"schemaId\":

\"32769\", \"topicId\" : \"32769\" , \"type\" :\"USER\" };type=application/json' -F

file=@notification.json

\"http://137.116.141.76:8080/kaaAdmin/rest/api/sendNotification\" | python -mjson.tool"

encodings = []

time=[]

def train(train_dir, model_save_path, n_neighbors=None, knn_algo='ball_tree',

verbose=False):

 if model_save_path == "trained_knn_model.clf":

 knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors,

algorithm=knn_algo, weights='distance')

 X = []

 y = []

 # Loop through each person in the training set

 for class_dir in os.listdir(train_dir):

 if not os.path.isdir(os.path.join(train_dir, class_dir)):

 continue

 # Loop through each training image for the current person

 for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)):

 47

 image = face_recognition.load_image_file(img_path)

 face_bounding_boxes = face_recognition.face_locations(image)

 if len(face_bounding_boxes) != 1:

 # If there are no people (or too many people) in a training image, skip the

image.

 if verbose:

 print("Image {} not suitable for training: {}".format(img_path, "Didn't find a

face" if len(face_bounding_boxes) < 1 else "Found more than one face"))

 else:

 # Add face encoding for current image to the training set

 X.append(face_recognition.face_encodings(image,

known_face_locations=face_bounding_boxes)[0])

 y.append(class_dir)

 # Determine how many neighbors to use for weighting in the KNN classifier

 if n_neighbors is None:

 n_neighbors = int(round(math.sqrt(len(X))))

 if verbose:

 print("Chose n_neighbors automatically:", n_neighbors)

 #------------Create and train the KNN classifier-------------------------------

 #Save the trained KNN classifier

 if model_save_path == "trained_knn_model.clf":

 knn_clf.fit(X, y)

 with open(model_save_path, 'wb') as f:

 pickle.dump(knn_clf, f)

 return knn_clf

def predict(face_encoding_array, clf=None, model_path=None, distance_threshold=0.6):

 if clf is None and model_path is None:

 raise Exception("Must supply classifier either thourgh clf or model_path")

 # Load a trained KNN model (if one was passed in)

 if clf is None:

 with open(model_path, 'rb') as f:

 clf = pickle.load(f)

 #if len(face_encoding_array) == 0:

 # get_data_from_client()

 # Use the KNN model to find the best matches for the test face

 if model_path == "trained_knn_model.clf" :

 48

 closest_distances = clf.kneighbors(face_encoding_array, n_neighbors=3,

return_distance=True)

 #print closest_distances

 are_matches = [closest_distances[0][i][0] <= distance_threshold for i in

range(len(face_encoding_array))]

 #print are_matches

 #result = clf.predict(face_encoding_array)

 #print "knn predict result:"

 #print (result)

 # Predict classes and remove classifications that aren't within the threshold

 return [(pred) if rec else ("unknown") for pred, rec in

zip(clf.predict(face_encoding_array), are_matches)]

def show_prediction(predictions, timestamp, location_in_frame, startTime, received_at,

predicted_at):

 #log and send notification to client

 for name in predictions:

 #if name != "unknown" :

 #name = name.encode("UTF-8")

 notification = str("Found - " + name + " - timestamp : " + timestamp + " -

location_in_frame : " + location_in_frame + " - times =" +

str(startTime)+","+str(received_at)+","+str(predicted_at))

 log.info(notification)

 print(notification)

 #create notification.json

 f=open("notification.json", "w+")

 f.write("{\"message\" : \""+notification+"\"}")

 f.close()

 #send anotification.json

 os.system(cmd)

def get_data_from_client():

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 print ('Socket created')

 #Bind socket to local host and port

 s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)

 try:

 s.bind(("localhost", 9000)) #server and port number

 except socket.error as msg:

 print ('Bind failed. Error Code : ' + str(msg[0]) + ' Message ' + msg[1])

 s.close()

 49

 sys.exit()

 print ('Socket bind complete')

 #Start listening on socket

 s.listen(5)

 print ('Socket now listening')

 #now keep talking with the client

 #wait to accept a connection - blocking call

 conn, addr = s.accept()

 print ('Connected with ' + addr[0] + ':' + str(addr[1]))

 data=conn.recv(1024*5)

 received_at = int(round((tt.time()+49.0866834)*1000))

 print data

 #print type(data)

 s.close()

 conn.close()

 jdata=data[data.find("{"):]

 try:

 #jdata=data[data.find("{"):]

 face_data_json=json.loads(jdata)

 #print(face_data_json)

 #print type(face_data_json)

 face = json.loads(face_data_json['event']['face'])

 #print(face)

 #print type(face)

 startTime = long(face_data_json['event']['timeStamp'])

 return face, startTime, received_at

 except ValueError, e:

 return "x",0,received_at

def face_recog():

 while True:

 # face_encoding

 face, startTime, received_at = get_data_from_client()

 #print face, startTime

 if(face != "x"):

 #get_data_from_client()

 # fetch face_encoding_str from face json / from camera app

 face_encoding = face['face_encoding']

 face_encoding = np.array(face_encoding)

 50

 face_encoding_array = []

 face_encoding_array.append(face_encoding)

 timestamp = face['timestamp']

 #print timestamp

 #get location in frames from face json/ from camera app

 location_in_frame = face['location_in_frame']

 knn_predictions = predict(face_encoding_array,

model_path="trained_knn_model.clf")

 predicted_at=int(round((tt.time()+49.0866834) * 1000))

 print knn_predictions

 print "knn:"

 show_prediction(knn_predictions, timestamp, location_in_frame, startTime,

received_at, predicted_at)

if __name__ == "__main__":

 if os.path.isfile("trained_knn_model.clf"):

 print("KNN Already trained!")

 else :

 print("Training KNN classifiers...")

 knn_classifier = train("train", model_save_path="trained_knn_model.clf",

n_neighbors=1)

 print("Training complete!")

 face_recog()

