Show simple item record

dc.contributor.authorUddin, Raihan
dc.date.accessioned2017-11-25T16:19:15Z
dc.date.available2017-11-25T16:19:15Z
dc.date.issued2017-11-25
dc.identifier.urihttp://dspace.uiu.ac.bd/handle/52243/43
dc.description.abstractProtein sub-cellular localization is defined as predicting the functioning location of a given protein in the cell. It is considered an important step towards protein function prediction and drug design. In this study, we used structural and evolutionary based features to represent the sequences of gram-positive and gram-negative bacteria protein dataset. In recent years all the works done in this sector are based on mainly PSSM features, they have not used SPIDER feature. PSSM gives us mainly evolutionary features and SPIDER gives us mainly structural features. In our study, we have extracted features from both PSSM and SPIDER. We have extracted a lot of features (total 46 features using 10 categories for both dataset) from both PSSM and SPIDER and choosed best features (total 6 features among 46 features for both dataset) among them. Our achieved result shows that SPIDER feature along with PSSM feature gives best performance than previous result with gram-positive benchmark, but gives a little low result for gram-negative benchmark. In this study, we have tried different kinds of classifier but among them Support Vector Machine (SVM) gives the best result.en_US
dc.language.isoen_USen_US
dc.subjectMachine Learningen_US
dc.subjectBioinformaticsen_US
dc.titleNovel Feature Extraction for Predicting Gram-Positive and Gram-Negative Bacteria Protein Sub-cellular Localizationen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record